
DOING MATHS
ALGORITHMICALLY IN THE
AGE OF THE COMPUTER:
INTRODUCING OCTAVE,
A COMPREHENSIVE, OPEN-
SOURCE SOFTWARE RESOURCE

ROGER HERZ-FISCHLER
E-MAIL: roger@herz-fischler.ca

Roger Herz-Fischler is a retired Ontario
mathematics professor and former
secondary school teacher. He is the
author of many academic articles and
books (e.g., A Mathematical History of
the Golden Number), ranging in topics
from abstract probability theory to art
history.

This article has several goals:
1. To put forward my view that we should be introducing

high school students to an algorithmic approach to
solving certain problems where either there is no nice
“formula” (in the classic sense, e.g., the Pythagorean
Theorem), or where a complicated situation is better
resolved by working through a sequence of more
manageable steps

2. To point out the virtually complete dichotomy between
the Ontario secondary school computing and
mathematics curricula, and how this affects students,
not only at the secondary level, but also during their
further studies

3. To encourage teachers to introduce students to
Octave, a relatively easy-to-learn, open-source
programming language, with which students can do
most, or perhaps even all of their assignments
involving statistics, data analysis, equations,
matrices, plotting, etc., and which they can continue
to use in their post-secondary studies
To illustrate, I am going to discuss a variation of the

well-known birthday problem:
When we ask k students to state their birthday, we

are essentially asking them to choose a number at
random from 1, 2, ..., 365. Instead of 365, we can ask
them to pick an integer from 1, 2, ..., n. We want to find
p, the probability that at least two students pick the same
number:

Before you read any further, you are invited to try and
calculate, using a calculator, spreadsheet, etc., the value
of p when k = 100 people, and n = 3000. Now let us see
how we would do this using Octave. Being a very high-
level language, the commands correspond to
mathematical statements, and this makes programming
quite simple. Suppose that we want to create the row
vector [1, 2, ..., 100], we simply write: a = [1 : 1 : 100],
where the 1 in the middle indicates that we are
increasing by steps of 1. To go in descending order, as in
the formula for p, we simply use a negative step, e.g.,
b = [100 : -1 : 1]. To find the product of the numbers
100, 99, ..., 1, we need only write prod(b).

Multiplication and division are indicated by “*” and “/,”
and when applied to a row vector, the operation will be
performed on each element of the vector, e.g., we could
write c = (1/100)* b. Then we could write prod(c) to
obtain the product of the elements of c.

So, to do the calculations for k = 100 people and
n = 3000, we simply type in the following at the Octave
prompt (the semi-colon prevents displaying long
vectors):

a = [3000 : -1 : (3000 – 100 + 1)];
b = (1/3000)*a;
c = prod(b);
p = 1 – c
Octave quickly responds with the answer

p = 0.81148. Here we have used Octave as a powerful
calculator. If we wanted to perform the same calculation
for many combinations of k and n, we would create a
short program with two input statements:

k = input(‘how many people?’);
n = input(‘what is n?’);
a = [n : -1 : (n – k + 1)];
b = (1/n)*a;
c = prod(b);
p = 1 – c;
disp(p) % disp = display; % is used for comments
The program is simply an algorithmic transcription of

the mathematics. Instead of input statements, we could
just as easily have created a function of k and n. If we
wanted to calculate the birthday probabilities for k = 10,
20, ..., 60, we could add a loop. This is the way
computing is done in the real world: use a text editor to
create a program, run your program, debug it, expand its

= − ⋅ − ⋅ − ⋅…⋅ − +p n
n
n
n

n
n

n k
n1 1 2 1

36 JUNE 2015 OAME/AOEM GAZETTE

roger

roger

roger

roger

roger

roger

capabilities, store the values, and do a plot.
Above, we were given k and n and obtained the value

of p. We can consider this as a direct problem and
solution. A more complicated situation occurs because of
the nature of the birthday problem. If we run the last
program with k = 30 and n = 365, we find that p = .71.
This means that if you try the birthday experiment in a
class of 30, you have the large probability of .29 of
looking rather silly. This leads to an indirect problem and
solution. We now start off by fixing a level of tolerance
ahead of time, for example .95, which corresponds to the
“19 times out of 20” used by pollsters. Our task now is to
find as large a value of n as possible so that if 30 people
pick a number from 1, 2, ..., n, then the probability that at
least two people pick the same number is at least .95. In
view of the fact that the quantity n appears k times in our
formula for p, finding a closed-form formula for n is
probably an impossible task. However, by thinking
algorithmically and then using an extension of the above
Octave program, we can easily find the largest value of n
for given values of k and p.

The algorithm for finding n:
1. Start with the value for k and the desired level of

tolerance.
2. Begin with n = k (when p is virtually equal to 1).
3. For each value of w, find p in terms of k and n.
4. Is p greater than the desired level?

If yes, increase n by 1 and redo the calculation for p.
If no, n is now too large; subtract 1 and stop.
To translate this algorithm into an Octave program,

we take the above program and put it inside a “while-
loop.” To simplify, we will take k = 30 and set the
tolerance at .95. The program would then read:

n = 30; % start with n = k = 30
p = 1; % we start above the tolerance of .95
while p > = .95

n = n + 1; % increment n by 1
a = [n: – 1:(n – k + 1)];
b = (1/n)*a;
c = prod(b);
p = 1 – c

endwhile % loop again while p > = .95
disp(‘maximum n is’), disp(n – 1) % we went too far,
so use n – 1
If we run this program, we find that if we want to be

certain 19 times out of 20, then the maximum allowable

value of n is only 155, which is well below 365. For
40 students, we can go up to 273, and in an auditorium
with 100 people, up to 1685!

Here is another set of direct/indirect problems. The
direct problem is taken—with a modification of the
wording—from a Grade 12 textbook: “At a manufacturing
plant, 35% of the employees call in sick on any given
day. If the plant has 20 employees on the payroll, what is
the probability that no more than 7 call in sick on any
given day?” The corresponding indirect problem would
be: “What is the minimum number of employees required
so that the probability that no more than 7 employees
are sick on a given day is at least .90?” To solve this, we
would proceed in the same algorithmic manner as with
the pick-a-number problem above.

Some Thoughts on Mathematics and
Computer Science Curricula

If you download the 72-page Ontario Computer
Science curriculum and search for “mathematics,” you
will note that there are zero occurrences. All that we find
are vague references to “mathematical literacy.” We also
learn that in course ICS4U (A3.5), students will learn
algorithms to perform matrix operations. In other words,
there is apparently no place for applied computing—
mathematics, as such, lives in another, separate world.
In my opinion, Ontario mathematics education reflects
the 1980s era, as far as computing is concerned. When
many of our students go on to university or college, they
will not likely be using spreadsheets or programmable
calculators, but rather, working with real computers.
Perhaps what is needed is a course entitled something
like, “Applied Computing for Mathematics and Science,”
so that students will be prepared for the practical side of
the next stage of their studies.

Why am I advocating that Octave be introduced into
the Ontario secondary school curriculum? To begin with,
every engineering program in Canada uses Octave (or a
comparable, commercial product such as MATLAB) in
their courses. Students in higher-level science courses
often need to do applied programming, complicated
graphing, etc. In first- and higher-year courses in linear
algebra, students learn about row reduction (another
example of an algorithmic process). Octave easily
handles this, as well as every other linear algebra
calculation.

Further, at the high school level, Octave would be
ideal for the course “Mathematics of Data Management.”
With this one tool, students would be able to do all the

OAME/AOEM GAZETTE JUNE 2015 37

computations, and do them in a systematic manner. As
an example, suppose we take 11 measurements on each
member of a group of people. For each person, we
create a 1 x 11 row vector of data. We label these row
vectors a1, a2,.... We then create a matrix DATA1 by
simply listing the vectors and separating them by semi-
colons: DATA1 = [a1 ; a2 ; ...]. Then all we have to do is
apply the Octave functions—“mean,” “median,” “mode,”
“std,” “quantile,” etc.—to DATA1. If later on we have
another data set, DATA2, we can work with the two sets
separately and then see what happens when we
combine them via DATA3 = [DATA1 ; DATA2]. Simple
commands also allow us to obtain bar graphs, to
generate large amounts of random data, or to toss coins
thousands or millions of times.

Octave
Octave originated in 1988, when early versions were

used in chemical engineering courses at the University
of Wisconsin. Unlike the commercial MATLAB, Octave is
open-source and thus may be freely downloaded for
Linux and BSD (the two systems used on most
mainframes), Windows, and Mac OSX [www.gnu.org/
software/octave/download.html].

For the benefit of teachers and students, I have put
together a series of support resources that can be freely
downloaded from the website: web.ncf.ca/en493/
stUDent_LinUX/stUDent_LinUX.html. The
resources include, in addit ion to software, my
instructional booklets entitled An Introduction to Octave
for High School and University Students and An
Introduction to Student Linux. Linux, because of the
possibility of having multiple “desktops,” is ideal for
methodical teaching and learning. The booklets can be
freely copied and distributed to colleagues and students.
All of the software, including the Linux distribution itself,
is open source so that there are absolutely no user fees
or restrictions associated with their distribution or use.

Acknowledgements
I read about the pick-a-number problem at least

40 years ago, but I have not seen it mentioned since.
Unfortunately, I no longer have the reference, but as I
recall, it was in a magazine for high school teachers of
mathematics. A special thanks to Bruce McLaurin, the
head of mathematics at Glebe Collegiate in Ottawa, for
taking time to discuss the high school curriculum with
me. I also much appreciated the comments of the
various reviewers concerning the original version of this
article.

References
Haese, R., Haese, M., Humphries, M., Haese, S., & Owen, J.

(2004). Mathematics for the international student. [The
direct factory question above was adapted from p. 723,
exercise 3.]

Herz-Fischler, R. (2014). An introduction to Octave for high
school and university students. [The text can be freely
downloaded (web.ncf.ca/en493/stUDent_LinUX/
stUDent_LinUX.html), may be modified, if desired, and
then reproduced, on a non-commercial basis, for
distribution to students.] See section 11 on how to present
the solution of simultaneous equations by the method of
row reduction and also by using Octave. For data analysis
and statistics, see sections 05, 10, 19. Matrix operations
are discussed in section 20.

Herz-Fischler, R. (2000). The shape of the great pyramid. [See
the notes relating to the computations, p. 197. All
computations were done in a systematic, algorithmic
fashion; for certain repeated calculations, e.g.,
Pythagorean theorem, laws of sine and cosine, functions
were first defined in Octave files and then called when
needed.]

Ontario Ministry of Education. (2008). The Ontario curriculum,
grades 10 to 12: Computer studies, 2008 (revised).
Retrieved from www.edu.gov.on.ca/eng/curriculum/
secondary/computer10to12_2008.txt

38 JUNE 2015 OAME/AOEM GAZETTE

Encyclopedia of Mathematics Education
(S. Lerman, 2014) Excerpts

“The politics of language are to some extent
self-evident in the structure of the research
community. In particular, English is the
predominant language of this community; the
leading international journals and conferences
all prefer English. …There are thousands more
languages in the world that are entirely absent
from mathematics education research discourse.
The preference for English makes things easier
for English-speaking researchers…and more
challenging for everyone else. It also, however,
privileges certain ways of thinking about
mathematics, teaching and learning, while
rendering invisible other alternatives.” (p. 335)

Barwell, R. (2014). Language background in
mathematics education. In S. Lerman (Ed.),
Encyclopedia of mathematics education
(pp. 331–336). London, UK: Springer.

