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3.1 Process Concept

A process is an instance of a program in execution.
Batch systems work in terms of "jobs". Many modern process concepts are still expressed in terms of jobs, ( e.g. job scheduling ), and the
two terms are often used interchangeably.

3.1.1 The Process

Process memory is divided into four sections as shown in Figure 3.1 below:
The text section comprises the compiled program code, read in from non-volatile storage when the program is launched.
The data section stores global and static variables, allocated and initialized prior to executing main.
The heap is used for dynamic memory allocation, and is managed via calls to new, delete, malloc, free, etc.
The stack is used for local variables. Space on the stack is reserved for local variables when they are declared ( at
function entrance or elsewhere, depending on the language ), and the space is freed up when the variables go out of
scope. Note that the stack is also used for function return values, and the exact mechanisms of stack management may be
language specific.
Note that the stack and the heap start at opposite ends of the process's free space and grow towards each other. If they
should ever meet, then either a stack overflow error will occur, or else a call to new or malloc will fail due to insufficient
memory available.

When processes are swapped out of memory and later restored, additional information must also be stored and restored. Key
among them are the program counter and the value of all program registers.

Figure 3.1 - A process in memory

3.1.2 Process State

Processes may be in one of 5 states, as shown in Figure 3.2 below.
New - The process is in the stage of being created.
Ready - The process has all the resources available that it needs to run, but the CPU is not currently working on this
process's instructions.
Running - The CPU is working on this process's instructions.
Waiting - The process cannot run at the moment, because it is waiting for some resource to become available or for
some event to occur. For example the process may be waiting for keyboard input, disk access request, inter-process
messages, a timer to go off, or a child process to finish.
Terminated - The process has completed.

The load average reported by the "w" command indicate the average number of processes in the "Ready" state over the last 1,
5, and 15 minutes, i.e. processes who have everything they need to run but cannot because the CPU is busy doing something
else.
Some systems may have other states besides the ones listed here.



Figure 3.2 - Diagram of process state

3.1.3 Process Control Block

For each process there is a Process Control Block, PCB, which stores the following ( types of ) process-specific information, as
illustrated in Figure 3.1. ( Specific details may vary from system to system. )

Process State - Running, waiting, etc., as discussed above.
Process ID, and parent process ID.
CPU registers and Program Counter - These need to be saved and restored when swapping processes in and out of the CPU.
CPU-Scheduling information - Such as priority information and pointers to scheduling queues.
Memory-Management information - E.g. page tables or segment tables.
Accounting information - user and kernel CPU time consumed, account numbers, limits, etc.
I/O Status information - Devices allocated, open file tables, etc.

Figure 3.3 - Process control block ( PCB )



Figure 3.4 - Diagram showing CPU switch from process to process



Unnumbered side bar

Digging Deeper: The Linux task_struct definition in sched.h ( See also the top of that file. )

3.1.4 Threads

http://lxr.linux.no/#linux+v3.11/include/linux/sched.h#L1027


Modern systems allow a single process to have multiple threads of execution, which execute concurrently. Threads are covered
extensively in the next chapter.

3.2 Process Scheduling

The two main objectives of the process scheduling system are to keep the CPU busy at all times and to deliver "acceptable" response times
for all programs, particularly for interactive ones.
The process scheduler must meet these objectives by implementing suitable policies for swapping processes in and out of the CPU.
( Note that these objectives can be conflicting. In particular, every time the system steps in to swap processes it takes up time on the CPU to
do so, which is thereby "lost" from doing any useful productive work. )

3.2.1 Scheduling Queues

All processes are stored in the job queue.
Processes in the Ready state are placed in the ready queue.
Processes waiting for a device to become available or to deliver data are placed in device queues. There is generally a separate
device queue for each device.
Other queues may also be created and used as needed.

 
Figure 3.5 - The ready queue and various I/O device queues

3.2.2 Schedulers

A long-term scheduler is typical of a batch system or a very heavily loaded system. It runs infrequently, ( such as when one
process ends selecting one more to be loaded in from disk in its place ), and can afford to take the time to implement intelligent
and advanced scheduling algorithms.
The short-term scheduler, or CPU Scheduler, runs very frequently, on the order of 100 milliseconds, and must very quickly
swap one process out of the CPU and swap in another one.
Some systems also employ a medium-term scheduler. When system loads get high, this scheduler will swap one or more
processes out of the ready queue system for a few seconds, in order to allow smaller faster jobs to finish up quickly and clear
the system. See the differences in Figures 3.7 and 3.8 below.
An efficient scheduling system will select a good process mix of CPU-bound processes and I/O bound processes.



Figure 3.6 - Queueing-diagram representation of process scheduling

 
Figure 3.7 - Addition of a medium-term scheduling to the queueing diagram

3.2.3 Context Switch

Whenever an interrupt arrives, the CPU must do a state-save of the currently running process, then switch into kernel mode to
handle the interrupt, and then do a state-restore of the interrupted process.
Similarly, a context switch occurs when the time slice for one process has expired and a new process is to be loaded from the
ready queue. This will be instigated by a timer interrupt, which will then cause the current process's state to be saved and the
new process's state to be restored.
Saving and restoring states involves saving and restoring all of the registers and program counter(s), as well as the process
control blocks described above.
Context switching happens VERY VERY frequently, and the overhead of doing the switching is just lost CPU time, so context
switches ( state saves & restores ) need to be as fast as possible. Some hardware has special provisions for speeding this up,
such as a single machine instruction for saving or restoring all registers at once.
Some Sun hardware actually has multiple sets of registers, so the context switching can be speeded up by merely switching
which set of registers are currently in use. Obviously there is a limit as to how many processes can be switched between in this
manner, making it attractive to implement the medium-term scheduler to swap some processes out as shown in Figure 3.8
above.



3.3 Operations on Processes

3.3.1 Process Creation

Processes may create other processes through appropriate system calls, such as fork or spawn. The process which does the
creating is termed the parent of the other process, which is termed its child.
Each process is given an integer identifier, termed its process identifier, or PID. The parent PID ( PPID ) is also stored for
each process.
On typical UNIX systems the process scheduler is termed sched, and is given PID 0. The first thing it does at system startup
time is to launch init, which gives that process PID 1. Init then launches all system daemons and user logins, and becomes the
ultimate parent of all other processes. Figure 3.9 shows a typical process tree for a Linux system, and other systems will have
similar though not identical trees:



Figure 3.8 - A tree of processes on a typical Linux system

Depending on system implementation, a child process may receive some amount of shared resources with its parent. Child
processes may or may not be limited to a subset of the resources originally allocated to the parent, preventing runaway children
from consuming all of a certain system resource.
There are two options for the parent process after creating the child:

1. Wait for the child process to terminate before proceeding. The parent makes a wait( ) system call, for either a specific
child or for any child, which causes the parent process to block until the wait( ) returns. UNIX shells normally wait for
their children to complete before issuing a new prompt.

2. Run concurrently with the child, continuing to process without waiting. This is the operation seen when a UNIX shell
runs a process as a background task. It is also possible for the parent to run for a while, and then wait for the child later,
which might occur in a sort of a parallel processing operation. ( E.g. the parent may fork off a number of children
without waiting for any of them, then do a little work of its own, and then wait for the children. )

Two possibilities for the address space of the child relative to the parent:
1. The child may be an exact duplicate of the parent, sharing the same program and data segments in memory. Each will

have their own PCB, including program counter, registers, and PID. This is the behavior of the fork system call in
UNIX.

2. The child process may have a new program loaded into its address space, with all new code and data segments. This is
the behavior of the spawn system calls in Windows. UNIX systems implement this as a second step, using the exec
system call.

Figures 3.10 and 3.11 below shows the fork and exec process on a UNIX system. Note that the fork system call returns the PID
of the processes child to each process - It returns a zero to the child process and a non-zero child PID to the parent, so the
return value indicates which process is which. Process IDs can be looked up any time for the current process or its direct parent
using the getpid( ) and getppid( ) system calls respectively.



Figure 3.9 Creating a separate process using the UNIX fork( ) system call.

Figure 3.10 - Process creation using the fork( ) system call

Related man pages:
fork( 2 )
exec( 3 )
wait( 2 )

 

Figure 3.12 shows the more complicated process for Windows, which must provide all of the parameter information for the
new process as part of the forking process.

http://linuxmanpages.com/man2/fork.2.php
http://linuxmanpages.com/man3/exec.3.php
http://linuxmanpages.com/man2/wait.2.php


 
Figure 3.11

3.3.2 Process Termination

Processes may request their own termination by making the exit( ) system call, typically returning an int. This int is passed
along to the parent if it is doing a wait( ), and is typically zero on successful completion and some non-zero code in the event
of problems.

child code:

            int exitCode; 

            exit( exitCode );  // return exitCode; has the same effect when executed from main( )

parent code:



            pid_t pid; 

            int status 

            pid = wait( &status );  

            // pid indicates which child exited. exitCode in low-order bits of status 

            // macros can test the high-order bits of status for why it stopped

Processes may also be terminated by the system for a variety of reasons, including:
The inability of the system to deliver necessary system resources.
In response to a KILL command, or other un handled process interrupt.
A parent may kill its children if the task assigned to them is no longer needed.
If the parent exits, the system may or may not allow the child to continue without a parent. ( On UNIX systems,
orphaned processes are generally inherited by init, which then proceeds to kill them. The UNIX nohup command allows
a child to continue executing after its parent has exited. )

When a process terminates, all of its system resources are freed up, open files flushed and closed, etc. The process termination
status and execution times are returned to the parent if the parent is waiting for the child to terminate, or eventually returned to
init if the process becomes an orphan. ( Processes which are trying to terminate but which cannot because their parent is not
waiting for them are termed zombies. These are eventually inherited by init as orphans and killed off. Note that modern UNIX
shells do not produce as many orphans and zombies as older systems used to. )

3.4 Interprocess Communication

Independent Processes operating concurrently on a systems are those that can neither affect other processes or be affected by other
processes.
Cooperating Processes are those that can affect or be affected by other processes. There are several reasons why cooperating processes are
allowed:

Information Sharing - There may be several processes which need access to the same file for example. ( e.g. pipelines. )
Computation speedup - Often a solution to a problem can be solved faster if the problem can be broken down into sub-tasks to be
solved simultaneously ( particularly when multiple processors are involved. )
Modularity - The most efficient architecture may be to break a system down into cooperating modules. ( E.g. databases with a client-
server architecture. )
Convenience - Even a single user may be multi-tasking, such as editing, compiling, printing, and running the same code in different
windows.



Cooperating processes require some type of inter-process communication, which is most commonly one of two types: Shared Memory
systems or Message Passing systems. Figure 3.13 illustrates the difference between the two systems:



Figure 3.12 - Communications models: (a) Message passing. (b) Shared memory.

Shared Memory is faster once it is set up, because no system calls are required and access occurs at normal memory speeds. However it is
more complicated to set up, and doesn't work as well across multiple computers. Shared memory is generally preferable when large
amounts of information must be shared quickly on the same computer.
Message Passing requires system calls for every message transfer, and is therefore slower, but it is simpler to set up and works well across
multiple computers. Message passing is generally preferable when the amount and/or frequency of data transfers is small, or when multiple
computers are involved.

3.4.1 Shared-Memory Systems

In general the memory to be shared in a shared-memory system is initially within the address space of a particular process,
which needs to make system calls in order to make that memory publicly available to one or more other processes.
Other processes which wish to use the shared memory must then make their own system calls to attach the shared memory area
onto their address space.
Generally a few messages must be passed back and forth between the cooperating processes first in order to set up and
coordinate the shared memory access.

Producer-Consumer Example Using Shared Memory

This is a classic example, in which one process is producing data and another process is consuming the data. ( In this example
in the order in which it is produced, although that could vary. )
The data is passed via an intermediary buffer, which may be either unbounded or bounded. With a bounded buffer the producer
may have to wait until there is space available in the buffer, but with an unbounded buffer the producer will never need to wait.
The consumer may need to wait in either case until there is data available.
This example uses shared memory and a circular queue. Note in the code below that only the producer changes "in", and only
the consumer changes "out", and that they can never be accessing the same array location at the same time.
First the following data is set up in the shared memory area:

#define BUFFER_SIZE 10

typedef struct {

     . . .

} item;

item buffer[ BUFFER_SIZE ];

int in = 0;

int out = 0;

Then the producer process. Note that the buffer is full when "in" is one less than "out" in a circular sense:

// Code from Figure 3.13

item nextProduced;

while( true ) {

/* Produce an item and store it in nextProduced */

nextProduced = makeNewItem( . . . ); 

/* Wait for space to become available */ 

while( ( ( in + 1 ) % BUFFER_SIZE ) == out )



      ; /* Do nothing */

/* And then store the item and repeat the loop. */ 

buffer[ in ] = nextProduced;

in = ( in + 1 ) % BUFFER_SIZE;

}

Then the consumer process. Note that the buffer is empty when "in" is equal to "out":

// Code from Figure 3.14

item nextConsumed;

while( true ) {

/* Wait for an item to become available */ 

while( in == out )

      ; /* Do nothing */

/* Get the next available item */ 

nextConsumed = buffer[ out ];

out = ( out + 1 ) % BUFFER_SIZE;

/* Consume the item in nextConsumed

     ( Do something with it ) */

}

3.4.2 Message-Passing Systems

Message passing systems must support at a minimum system calls for "send message" and "receive message".
A communication link must be established between the cooperating processes before messages can be sent.
There are three key issues to be resolved in message passing systems as further explored in the next three subsections:

Direct or indirect communication ( naming )
Synchronous or asynchronous communication
Automatic or explicit buffering.

3.4.2.1 Naming

With direct communication the sender must know the name of the receiver to which it wishes to send a message.
There is a one-to-one link between every sender-receiver pair.
For symmetric communication, the receiver must also know the specific name of the sender from which it
wishes to receive messages. 
For asymmetric communications, this is not necessary.

Indirect communication uses shared mailboxes, or ports.
Multiple processes can share the same mailbox or boxes.
Only one process can read any given message in a mailbox. Initially the process that creates the mailbox is
the owner, and is the only one allowed to read mail in the mailbox, although this privilege may be
transferred.

( Of course the process that reads the message can immediately turn around and place an identical
message back in the box for someone else to read, but that may put it at the back end of a queue of
messages. )

The OS must provide system calls to create and delete mailboxes, and to send and receive messages to/from
mailboxes.

3.4.2.2 Synchronization

Either the sending or receiving of messages ( or neither or both ) may be either blocking or non-blocking.

3.4.2.3 Buffering

Messages are passed via queues, which may have one of three capacity configurations:
1. Zero capacity - Messages cannot be stored in the queue, so senders must block until receivers accept the

messages.
2. Bounded capacity- There is a certain pre-determined finite capacity in the queue. Senders must block if the

queue is full, until space becomes available in the queue, but may be either blocking or non-blocking
otherwise.

3. Unbounded capacity - The queue has a theoretical infinite capacity, so senders are never forced to block.



3.5 Examples of IPC Systems

3.5.1 An Example: POSIX Shared Memory ( Eighth Edition Version )

1. The first step in using shared memory is for one of the processes involved to allocate some shared memory, using shmget:

int segment_id = shmget( IPC_PRIVATE, size, S_IRUSR | S_IWUSR );

The first parameter specifies the key ( identifier ) of the segment. IPC_PRIVATE creates a new shared
memory segment.
The second parameter indicates how big the shared memory segment is to be, in bytes.
The third parameter is a set of bitwise ORed flags. In this case the segment is being created for reading and
writing.
The return value of shmget is an integer identifier

2. Any process which wishes to use the shared memory must attach the shared memory to their address space, using shmat:

char * shared_memory = ( char * ) shmat( segment_id, NULL, 0 );

The first parameter specifies the key ( identifier ) of the segment that the process wishes to attach to its address space
The second parameter indicates where the process wishes to have the segment attached. NULL indicates that the system
should decide.
The third parameter is a flag for read-only operation. Zero indicates read-write; One indicates readonly.
The return value of shmat is a void *, which the process can use ( type cast ) as appropriate. In this example it is being
used as a character pointer.

3. Then processes may access the memory using the pointer returned by shmat, for example using sprintf:

sprintf( shared_memory, "Writing to shared memory\n" );

4. When a process no longer needs a piece of shared memory, it can be detached using shmdt:

shmdt( shared_memory );

5. And finally the process that originally allocated the shared memory can remove it from the system suing shmctl.

shmctl( segment_id, IPC_RMID );

6. Figure 3.16 from the eighth edition illustrates a complete program implementing shared memory on a POSIX system:



3.5.1 An Example: POSIX Shared Memory ( Ninth Edition Version )

1. The ninth edition shows an alternate approach to shared memory in POSIX systems. Under this approach, the first
step in using shared memory is to create a shared-memory object using shm_open( ),in a fashion similar to other
file opening commands. The name provided will be the name of the memory-mapped file.

shm_fd = shm_open( name,O_CREAT | O_RDRW,0666 );

2. The next step is to set the size of the file using ftruncate:

ftruncate( shm_fd, 4096 );

3. Finally the mmap system call maps the file to a memory address in the user program space.and makes it shared. In
this example the process that created the shared memory will be writing to it:

ptr = mmap( 0, SIZE,PROT_WRITE, MAP_SHARED, shm_fd, 0 );



4. The "borrower" of the shared memory, ( not the one who created it ), calls shm_open( ) and mmap( ) with
different arguments, skips the ftruncate( ) step and unlinks ( removes ) the file name when it is done with it.
Note that the "borrower" must use the same file name as the "lender" who created it. ( This information could have
been passed using messages. )

shm_unlink( name );

5. Note that writing to and reading from the shared memory is done with pointers and memory addresses ( sprintf ) in
both the 9th and 8th edition versions, even though the 9th edition is illustrating memory mapping of a file.

6. Figures 3.17 and 3.18 from the ninth edition illustrate a complete program implementing shared memory on a
POSIX system:



3.5.2 An Example: Mach

Recall that the Mach kernel is a micro kernel, which performs few services besides delivering messages between other tasks (
both system tasks and user tasks. )
Most communication in Mach, including all system calls and inter-process communication is done via messages sent to
mailboxes, also known as ports.
Whenever a task ( process ) is created, it automatically gets two special mailboxes: a Kernel mailbox, and a Notify mailbox.

The kernel communicates with the task using the Kernel mailbox.
The kernel sends notification of events to the Notify mailbox.

Three system calls are used for message transfer:
msg_send( ) sends a message to a mailbox
msg_receive( ) receives a message.
msg_rpc( ) sends a message and waits for exactly one message in response from the sender.

Port_allocate( ) creates a new mailbox and the associated queue for holding messages ( size 8 by default. )
Only one task at a time can own or receive messages from any given mailbox, but these are transferable.
Messages from the same sender to the same receiver are guaranteed to arrive in FIFO order, but no guarantees are made
regarding messages from multiple senders.
Messages consist of a fixed-length header followed by variable length data.

The header contains the mailbox number ( address ) of the receiver and the sender.
The data section consists of a list of typed data items, each containing a type, size, and value.

If the receiver's mailbox is full, the sender has four choices:



1. Wait indefinitely until there is room in the mailbox.
2. Wait at most N milliseconds.
3. Do not wait at all.
4. Temporarily cache the message with the kernel, for delivery when the mailbox becomes available.

Only one such message can be pending at any given time from any given sender to any given receiver.
Normally only used by certain system tasks, such as the print spooler, which must notify the "client" of the
completion of their job, but cannot wait around for the mailbox to become available.

Receive calls must specify the mailbox or mailbox set from which they wish to receive messages.
Port_status( ) reports the number of messages waiting in any given mailbox.
If there are no messages available in a mailbox ( set ), the receiver can either block for N milliseconds, or not block at all.
In order to avoid delays caused by copying messages ( multiple times ), Mach re-maps the memory space for the message from
the sender's address space to the receiver's address space ( using virtual memory techniques to be covered later ), and does not
actually move the message anywhere at all. ( When the sending and receiving task are both on the same computer. )

3.5.3 An Example: Windows XP

Figure 3.19 - Advanced local procedure calls in Windows

3.6 Communication in Client-Server Systems

3.6.1 Sockets

A socket is an endpoint for communication.
Two processes communicating over a network often use a pair of connected sockets as a communication channel. Software that
is designed for client-server operation may also use sockets for communication between two processes running on the same
computer - For example the UI for a database program may communicate with the back-end database manager using sockets. (
If the program were developed this way from the beginning, it makes it very easy to port it from a single-computer system to a
networked application. )
A socket is identified by an IP address concatenated with a port number, e.g. 200.100.50.5:80.



Figure 3.20 - Communication using sockets

Port numbers below 1024 are considered to be well-known, and are generally reserved for common Internet services. For
example, telnet servers listen to port 23, ftp servers to port 21, and web servers to port 80.
General purpose user sockets are assigned unused ports over 1024 by the operating system in response to system calls such as
socket( ) or soctkepair( ).
Communication channels via sockets may be of one of two major forms:

Connection-oriented ( TCP, Transmission Control Protocol ) connections emulate a telephone connection. All
packets sent down the connection are guaranteed to arrive in good condition at the other end, and to be delivered to the
receiving process in the order in which they were sent. The TCP layer of the network protocol takes steps to verify all
packets sent, re-send packets if necessary, and arrange the received packets in the proper order before delivering them to
the receiving process. There is a certain amount of overhead involved in this procedure, and if one packet is missing or
delayed, then any packets which follow will have to wait until the errant packet is delivered before they can continue
their journey.
Connectionless ( UDP, User Datagram Protocol ) emulate individual telegrams. There is no guarantee that any
particular packet will get through undamaged ( or at all ), and no guarantee that the packets will get delivered in any
particular order. There may even be duplicate packets delivered, depending on how the intermediary connections are
configured. UDP transmissions are much faster than TCP, but applications must implement their own error checking and
recovery procedures.

Sockets are considered a low-level communications channel, and processes may often choose to use something at a higher
level, such as those covered in the next two sections.
Figure 3.19 and 3.20 illustrate a client-server system for determining the current date using sockets in Java.


