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The exponential and logarithm functions are extraordinarily important in one-variable
calculus. However, they are hard to teach with any attempt at rigor without completely
confusing students. Conventional approaches are either very roundabout, or skip the
hard (and interesting) bits altogether. This paper attempts to bridge the gap. In the
process, it discusses a fundamental principle underlying the use of graphing calculators
(or computers) —“connecting the dots”, or continuous extension from a dense subset.

The challenge (as well as the beauty) of the whole subject is that the exponential and
logarithm functions1 play a number of roles in calculus:

(R1) bx is the extension of the formulabp/q = q
√

bp to realx.
(R2) ex is its own derivative;e is “some crazy number” which makes this happen.
(R3) bx is proportional to its own derivative; the proportionality factor is lnb.
(R4) ex and lnx are inverses, andbx = e(lnb)x.
(R5) lnx =

∫ x
1 t−1dt.

(R6) ex is the solution to the differential equationy′ = y, y(0) = 1.
(R7) ex = limn→∞(1+x/n)n.

Some calculus texts, for instance [5, 6, 7], define lnx via (R5) andex and bx via
(R4). The other roles become just computational facts. The reason for this roundabout
approach is the difficulty of doing (R1) properly. It is hard, however, to explain this
difficulty to students, who feel they already know whatbx is, and mathematicians must
be crazy if they don’t.

In response, other calculus texts, for instance [2, 3]), gloss over (R1) and then empir-
ically observe the first half of (R3), followed by (R2). Sometimes they introducee by
(R7), glossing over convergence. They define ln via (R4), and derive the other roles as
necessary. This is certainly much more natural, but foundationally incomplete.

An interesting paper, [8], builds the missing foundation by definingex via (R6). The
existence and uniqueness of a solution to the differential equation is proven by devel-
oping exactly enough about infinite series to show the power series forex (yet another
role!) converges. In this paper, I follow an alternate route, starting with (R1) and (R3).
Power series are replaced by uniform continuity. Apart from this, only elementary argu-
ments are needed. In particular, neither integration nor the rule for derivatives of inverse
functions are used except for (R5) and (R4).

The moral of the story is that actually any of the roles listed above can be chosen as
starting points without inherently being on foundationally shaky ground. None is really
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1In this paper, “exponential function” refers to a constant (always positive) base and varying exponent,

as opposed to “power function” where the exponent is fixed and the base varies. The word “natural” is
added in front of “exponential” or “logarithm” when the base ise.
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more fundamental than the others. The choice of approach becomes a paedagogical one,
with an instructor’s (or individual student’s) choice as to which steps to cover in what
level of detail being on the same level as a reader’s choice as to which lemmas to skip
over while reading a research paper.

1. RATIONAL EXPONENTIALS AND LOGARITHMS

Let’s start by explicitly stating the fundamental properties of rational exponentials and
their inverses, rational logarithms. It is worth temporarily introducing awkward-looking
“named function” notation for exponentials, in part to make it easier to “forget” certain
familiar algebraic properties that we don’t want to use until after Theorem 5, below.

Proposition 1 (Rational exponentials). For a fixed b> 0, the formula Eb(p/q) = bp/q =
q
√

bp defines a function Eb : Q → R+ satisfying thefundamental relationEb(x+ y) =
Eb(x)Eb(y). The function Eb is called therational exponential with baseb, and Eb(1) =
b.

Proposition 2 (Rational logarithms). For a fixed b> 0, b 6= 1, the formula Lb(x) =
logbx = E−1

b (x) defines a function Lb : Range(Eb)→ Q satisfying thefundamental re-
lation Lb(xy) = Lb(x)+Lb(y). The function Lb is called thelogarithm with baseb and
Lb(b) = 1.

The fundamental relations are enough to recover the other standard rules for expo-
nentials and logarithms. For instance,Eb(0) = 1 sinceEb(x+ 0) = Eb(x)Eb(0); and
E(xy) = E(x)y, (y = p/q), first by induction onp whenq = 1, and then by raising both
sides to theqth power. It also follows thatEb is monotonic (unlessb = 1) and thus is
indeed invertible.

2. IRRATIONAL EXPONENTS AND CONTINUOUS EXTENSIONS

A sketch-graph ofEb : Q → R+ (for fixed b) looks like an infinitely fine mesh of
points coalescing into a line, i.e.Eb appears to be continuous as a function ofQ. This
suggests definingbx for all real x by just “connecting the dots”. In fact, students (and
many post-students) implicitly believe the following general principle, and can often
state it themselves with a bit of terminological assistance:

Theorem 3(FALSE!). Suppose Q is a dense subset of a set R, and let f: Q→ R be
a continuous function. Then there is a unique continuous functionf̃ : R→ R which
extends f , i.e.̃f restricted to Q is the same as f .

To find f̃ (x), we ought to be able to just approximatex by elementsx′ ∈ Q and set
f̃ (x) = limx′→x f (x′). The continuity of f should somehow imply that this limit exists
and is unique. However, consider any functiong : R → R which is continuous except
for an essential discontinuity at an irrational numberξ, and let f = g|Q. The function
f is continuous, even ifg is not, since the discontinuity atξ is invisible from insideQ.
Theorem 3 clearly breaks down trying to definef̃ (ξ).

Theorem 4(Continuous extension from a dense set). Theorem 3 becomes true if f is
uniformly continuous on all bounded subsets of Q. In this case,f̃ is uniformly continu-
ous on all bounded subsets ofR.
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The proof starts along the lines outlined above, but involves the completeness of the
codomainR as well as uniform continuity (see [4, Theorem 15.4], for instance.) It
is of course unlikely that one would want to cover this in full detail in a beginning
calculus course. However, it can certainly be discussed at a comparable level of rigor
as, for instance, the Intermediate Value Theorem. The experience of having believed
Theorem 3 also makes students treat other results involving continuity and the nuts and
bolts of the structure of the real number system with more respect.

In fact, I claim that this theoremshouldbe mentioned on some level in any “serious”
calculus course, because it underlies the use of technology in mathematics! Plotting a
function on a computer or graphing calculator involves the machine calculating values
on a fairly fine mesh of points and interpolating in between on the screen. We then
further interpolate between the individual pixels with our eyes. The uselessness of tech-
nology for graphing the Dirichlet function (D(x) = 1 if x∈Q andD(x) = 0 if x∈R−Q),
or even the functionS(x) = sin(1/x) too close to 0, arises exactly from some sort of lack
of continuity and the associated difficulties in approximation. To what level it is appro-
priate to discuss the uniformity hypothesis varies with the course and the students, of
course, but the functionS(x) begs at least a mention of it.

We verify below thatEb : Q → R+ is uniformly continuous on bounded intervals.
For now, assume this and definebx for x ∈ R as Ẽb : R → R+, given by continuous
extension. The fundamental relation extends toR by continuity, and shows that the
extended function is also monotonic (unlessb = 1) and unbounded, so its range is all of
R+ and it has a continuous and monotonic inverseLb(x) = logbx.

Theorem 5(Exponentials and logarithms). There is a one-to-one correspondence be-
tween

1. Continuous functions E: R→R+, satisfying the fundamental relation E(x+y) =
E(x)E(y), called exponentials.

2. Nonconstant continuous functions L: R+→R, satisfying the fundamental relation
L(xy) = L(x)+L(y), called logarithms; and

3. Positive real numbers b, called bases.

The corresponding functions E and L are inverses; E(1) = b, L(b) = 1, E(x) = bx, and
bL(x) = x.

Sketch-proof.If E(x) is continuous and satisfies the fundamental relation (extended
from Q to R as above), thenE(px/q) = E(x)p/q as discussed after Proposition 1. This
persists forp/q replaced by any real number by continuity, and so we conclude that
E(x) = E(1)x. The results for logarithms follow by similar arguments and inversion.

We now dispense with the cumbersomeEb andLb notation introduced at the begin-
ning, but continue to remember thatb is fixed andx is what varies.

3. UNIFORM CONTINUITY OF bx

To showbx is a uniformly continuous function ofx on bounded subsets ofQ, and thus
to complete the extension tox∈ R, we use the formula

|bx−by|= by|bx−y−b0|.
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Sincebx is monotonic, it is bounded on any bounded interval by its values on the end-
points, and so all we need to prove is the following

Proposition 6. limx→0bx = 1 (x→ 0 throughQ).

We prove the case whereb > 1 andx→ 0+. The other cases follow similarly or by
substituting 1/b for b.

First proof. By the Pinching Theorem, it suffices to show 1≤ bx≤ 1+xb for 0< x< 1.
Fix x and consider the functiong(b) = 1+bx−bx. Sinceb is now the variable, thebx

term is a power function (with constant rational exponent), not an exponential. In fact,
g′(b) = x(1−bx−1) > 0, sog(b) is increasing. Sinceg(1) = x > 0, this meansg(b) > 0
for all b≥ 1.

The above proof uses the fact that a function whose derivative is positive on an interval
is increasing there, a consequence of the Mean Value Theorem. With a bit more effort,
we can avoid this.

Lemma 7. If b > 1 and n is a positive integer, then1≤ b1/n ≤ 1+b/n.

Proof. This first inequality is clear. For the second, assumeb1/n > 1+ b/n. Thenb >
(1+b/n)n > 1+nb/n = b+1, a contradiction.

Second proof of Proposition 6.By Lemma 7 and the Pinching Theorem,b1/n → 1. So
the limit is 1 asx→ 0+, since the values ofbx evaluated forx in between the points
{1/n} are constrained by monotonicity.

We can even make the last sentence more explicit: find the integern such that 1/(n+
1) ≤ x < 1/n. Thenn+ 1≥ 1/x, and son≥ 1/x− 1 = (1− x)/x > 0. Hence, using
Lemma 7 and monotonicity, we obtain an alternate pinching inequality

1≤ bx ≤ b1/n ≤ 1+b/n≤ 1+b
x

1−x
(1)

Here is yet another proof, a sneaky one using geometric series (with a nod to [8]). By
Lemma 7, 1≤ b1/q≤ 1+b/q, so that 1≤ bp/q≤ (1+b/q)p. Expand the final expression
using the Binomial Theorem, noting that

(p
k

)

≤ pk, so that
(p

k

)

(b/q)k ≤ bk(p/q)k ≤
b(p/q)k. Thus we get a finite subseries of the infinite geometric series with first term
b(p/q) and ratiop/q. Summing this series recovers the equation (1).

4. THE DERIVATIVE OF bx

Theorem 8. There is functionλ : R+ → R such that for all b> 0, d
dxb

x = λ(b)bx. In
particular, bx is a differentiable function for each b.

We postpone using the name “ln” forλ, until we show that it is indeed a logarithm in
the sense of Theorem 5.

Lemma 9. Supposeα > 0 and z> 1. Then(1+α)z≥ 1+αz.

First Proof (requiring MVT).We proceed as in the first proof of Proposition 6. Let
g(α) = (1+α)z− (1+αz). We haveg′(α) = z(1+α)z−1−z> 0 and sog is increasing
(MVT!) for α > 0. Sinceg(0) = 0, this implies the Lemma. By continuity, we may
restrict toz∈Q.
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Second Proof (no MVT but messier).Supposez∈Q, soz= p/q, p > q. The Lemma is
equivalent to the relation

(1+α)p ≥ (1+αp/q)q(2)

Expand both sides using the Binomial Theorem, and letLk andRk be the coefficients of
αk on the left hand and right hand sides respectively. Then

Lk =
(

p
k

)

=
p(p−1) . . .(p−k+1)

k!
(3)

Rk =
(

q
k

)

(p/q)k =
q(q−1) . . .(q−k+1)

k!

( p
q

)k
.(4)

However, sincep> q, (p/q)(q− i)≤ (p− i) for all 0≤ i < q and soLk≥Rk for 0≤ k≤
p < q. Also,Lk > 0 = Rk for p < k≤ q. Sinceα > 0, this implies inequality (2).

Proof of Theorem 8.The difference quotient for computingE′b(x) is

bx+h−bx

h
=

bh−1
h

bx

so it suffices to show that the functionF(x,h) = (xh−1)/h, defined forh 6= 0, tends to
a limit ash→ 0. GraphingF(x,h) for varioush strongly suggests that this is the case,
and that we should be able to prove it by some sort of pinching. An obvious idea is to
calculateF(x,h)−F(x,k), for small positiveh and small negativek, but this is a mess.
Instead, we remark that

F(x,−h) =
x−h−1
−h

= x−h1−xh

−h
= x−hF(x,h), and(5)

F(x,kh) =
xkh−1

kh
=

1
k

F(xk,h).(6)

Suppose now thath > 1 andx > 1. Lemma 9 implies that

F(x,h) =
(1+(x−1))h−1

h
≥ 1+h(x−1)−1

h
= x−1.(7)

Applying this to the right hand side of (6) (withk > 0), we obtain

F(x,kh)≥ (1/k)(xk−1) = F(x,k)(8)

which impliesF(x,k) increases as a function ofk. Chasing through the sign changes and
applying (5) as required, we discover that this remains true for 0< x < 1 and regardless
of the sign ofk.

Finally, lettingh→ 0 in (5), we seeF(x,h)/F(x,−h)→ 1. SinceF(x,h) increases as
a function ofh, this impliesF(x,h) is pinched to a limitλ(x) ash→ 0.

5. THE ANTIDERIVATIVE OF x−1

Observe thatF(x,h) =
∫ x

1 th−1dt. If we seth = 0, F(x,h) is no longer defined, but
∫ x

1 t−1dt is still some function ofx by the Fundamental Theorem of Calculus.

Theorem 10.
∫ x

1 t−1dt = λ(x) and so d
dxλ(x) = 1/x.
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Proof. The obvious idea is to just write
∫ x

1
t−1dt =

∫ x

1

(

lim
h→0

th−1)dt = lim
h→0

∫ x

1
th−1dt = lim

h→0
F(x,h) = λ(x).

This involves interchanging the limit and integral operations, which requires uniform
convergence. Alternatively, letΛ(x) =

∫ x
1 t−1dt. We claimΛ(x) = λ(x). Supposex > 1.

If h > 0, thenx−1+h < x−1 < x−1+h soF(x,−h) < Λ(x) < F(x,h) after integration. But
λ(x) is the only function which satisfies this ash→ 0.

6. λ(x) IS A LOGARITHM

We now have three different but compatible possible definitions ofλ(x). The first two
are via the roles (R3) and (R5). The third is the “limit” definition involving the ratio
F(x,h), which which actually underlies both of the others. We can use any of these to
prove the following

Proposition 11. The functionλ(x) has the following properties:

1. λ(1) = 0, λ(x) > 0 for x > 1, andλ(x) < 0 for x < 1.
2. λ(xy) = λ(x)+λ(y).
3. λ is an unbounded increasing continuous function.

It is thus is a logarithm.

It suffices to prove properties 1 and 2, and the continuity part of property 3. The
increasing and unbounded part of 3 is then automatic, since fory > 1 we getλ(xy) =
λ(x)+λ(y) > λ(x) andλ(xn) = nλ(x), andλ is not identically 1.

“Limit” proof. For property 1, supposex > 1. If h > 0, thenxh > 1, sohF(x,h) =
xh−1 > 0 and thusF(x,h) > 0. If h < 0, thenxh < 1, sohF(x,h) < 0 andF(x,h) > 0
as before. Thus the limit functionλ(x) is positive. The casex < 1 is similar.

For property 2, leth→ 0 in the following identity:

F(xy,h) =
xh(yh−1)+xh−1

h
= xhF(y,h)+F(x,h).(9)

Finally, to seeλ is continuous, it suffices to check thatλ(xy)−λ(x) = λ(y) can be
made arbitrarily small fory close to 1. But this follows from fixing some smallh > 0 in
the pinching inequalityF(y,−h)≤ λ(y)≤ F(y,h).

“Derivative” proof. Property 1 is immediate. For property 2, calculated
dz

∣

∣

z=0(xy)z in
two ways. On the one hand, it equalsλ(xy)(xy)z

∣

∣

z=0 = λ(xy). On the other hand, writing
(xy)z = xzyz and using the product rule, it equalsλ(x)+ λ(y). To prove continuity, use
the limit definition of the derivative and proceed as in the previous proof.

“Integral” proof. Property 1 and continuity follow directly from basic properties of the
integral and the Fundamental Theorem of Calculus. Property 2 follows from the standard
calculation d

dxλ(xy) = λ′(xy)y = y/(xy) = 1/x. Sinceλ(x) is itself an antiderivative of
1/x, λ(xy)−λ(x) is independent ofx, i.e. λ(xy) = λ(x)+ f (y) for some functionf (y).
Finally λ(1y) = λ(1)+ f (y) = f (y), so f (y) = λ(y).



EXPONENTIALS AND LOGARITHMS BY CONTINUOUS EXTENSION 7

Since lnx = λ(x) is a logarithm, there is necessarily some unique basee such that
lne= 1, and role (R4) follows by Theorem 5. Indeed, all logarithms and exponentials
are thus not only continuous but also differentiable.

Some traditional calculus texts, such as [5, 6], prepare the shock of the “integral”
definition of ln by first defining logarithms as asdifferentiablefunctions satisfying the
fundamental relationL(xy) = L(x)+L(y). Then it is shown by change of variable that
L′(x) = L′(1)/x and so ln is “natural” in thatL′(1) = 1. Differentiability as a require-
ment, however, is somewhat unnatural in what is otherwise so far a calculus-free con-
cept.

7. A PARALLEL WITH sinx, AND THE NATURALITY OF e

The above approach toddxb
x closely parallels the standard proof thatd

dx sinx = cosx.
Trigonometric identities reduce this to computing the limits

lim
h→0

sinh
h

and lim
h→0

1−cosh
h

.

This is analogous to our use of the limit limh→0F(b,h). Unfortunately, we no longer
have the nice geometric picture as in the(sinh)/h case, and so we have to work much
harder to show the limit actually exists. It is of course a function ofb.

The basee is “natural” in thatF(e,h)→ 1, as opposed to some other constant, just
as radians are the “natural” angle measure for which(sinh)/h→ 1. Thus use of basee
and radian measure eliminates annoying multiplicative constants in calculations, to the
extent we generally don’t bother remembering the formulas ford

dxb
x for generalb or for

d
dx sin in degrees. When necessary, either can always be obtained via chain rule from the
“natural” form.

Indeed, once we “know” the derivative ofex and sinx, we can even forget the limits
(sinh)/h andF(b,h), since we can recalculate them using l’Hospital’s rule. In fact, it
was the short note [1], placing lnb among the functionsF(b,h) via l’Hospital’s rule, that
planted the seed for the present paper in my head while I was an undergraduate.

There are a number of ways of obtaining the limitex = limn→∞(1+ x/n)n in (R7),
as well as the related limite= limh→0(1+ h)1/h, as a consequence of the other roles.
To complete my claim that any of the roles could in fact be chosen as starting points
in the exponential and logarithm “story”, it only remains to show by bare hands that
sn = (1+ x/n)n converges to a limit. To see this, expandsn by the Binomial Theorem.
As n→∞, the coefficients of eachxk approach those in the power series expansion ofex

from below, and the arguments used in [8] to prove the convergence of the power series
solution to (R6) also work for (R7).

8. CLASSROOM USE

Clearly, the number of details in a fully rigorous presentation along the lines of this
paper is excessive for classroom use. (This is an indisputable advantage of the “tradi-
tional approach” starting with (R5)—it is short enough, even in all its gory detail, not to
exhaust the instructor’s patience. The danger is that the instructor may thus not notice
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whether it exhausts thestudents’patience.) What can be left out, and at what places can
do various parts fit into the standard calculus curriculum?

The argument actually falls naturally into several modular segments, each of which
can be mentioned only briefly, worked through in detail, or even assigned as a sequence
of guided exercises:

(S1) (a) Properties ofbx for x∈Q
(b) (Uniform) continuity ofbx for x∈Q
(c) Extension tox∈ R

(S2) (a) Reduction ofddxb
x to F(x,h)

(b) F(x,h) increases withh
(c) F(x,h) is pinched to a limit.

(S3) lnx as antiderivative
(S4) lnx as logarithm
(S5) The role ofe

Segment (S1) can be covered any time after continuity, though the proofs are easier if
derivatives, MVT, and increasing functions have been covered. Because of the parallel
with d

dx sinx, (S2) should either follow that development, or directly follow (S1) if that
has been delayed post-MVT. All this (and also (S4), if desired) can be done prior to
introducing integration. There is no reason (S5) has to be last.

In my moderately theoretical first-year calculus course based on [5], I emphasize
the “mistake” (Theorem 3) in (S1), but wave my hands though the proof of the cor-
rected Theorem 4. I don’t prove (S2)(b) (which students find very believable) but do the
F(x,h)/F(x,−h) calculation in (S2)(c). I’ve placed (S1),(S2), (S4) both before and after
covering the Mean Value Theorem and before and after integration, the choice governed
by how far I am in the course by Christmas, and how comfortable the class seems with
bypassing the textbook’s arguments.
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