THE COMPLEX NEWTON METHOD—3 DIFFERENT WAYS

MARTIN PERGLER

A well-known heuristic for approximating roots of a polynomial or other “nice function” dver
or C is Newton’s method:

Newton’s method—Version 1(formula). Given a differentiable fR — R, or an analytic f: C —
C, the Newton iteration function is

@) N(x0) = X0 — f(x0)/ ' (0)
or given implicitly by

Given any initial guesgg, we iterate the process to obtain a sequence

X = No(x0) = (NoNo -0 N)(x) (= N(¥-1))

ntimes

If we are lucky, theNx (xo) = lim,_.. Np(Xo) exists. In this case, its value is a rootfof

There are various questions that come to mind:

1. Where does formula (1) come from?
2. What does the graph of the limit functidi, look like?
3. At what points (initial guesses) and why does the limit functityfail to exist?

The third question is certainly interesting: clearly there is a problem wherfépey) = 0, but
there are many other things that can go wrong, including cycles in the seqgxeand issues of
convergence. This falls within the scope of the study of dynamical systems, and there is actually a
fairly extensive qualitative understanding of fixed points, attractors, and cycles of iterated maps over
R (and to a lesser extent ov€) in general. However, for Newton’s method applied to “reasonable”
functionsf, the points at which such pathologies occur tend to be isolated and so if one is merely
interested in finding any root df, these considerations are not that relevant.

The second question gives rise to fascinating colourings of the complex plane, which arise as
“pasin of attraction” graphs for analytit as simple ad (z) = 2 — 1. These are among the second
rank of “most famous” fractal images, after the Mandelbrot set. The situation turns out the be pretty
interesting oveR as well.

The first question is the focus of this note.

1. WHAT DOES IT MEAN?

Over R, the derivation of Newton’s method can be found in almost any elementary calculus
textbook. The formula (1) is what follows from the following geometric principle:
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Newton’s method—Version 2(geometric description)To obtain NXo), replace the graph of (k)
by its tangent line ;f at x= Xo. Let N(Xo) be the point of intersection of Twith the x-axis.

For x close to ¥, Ty, should be a “good” approximation to (k), so if N(xo) is close to ¥,
N(Xo) should be close to a root of f. The heuristic is that even(g)\is not terribly close to ¥,
perhaps Nxp) is a better approximation to a root of f thag bs, and in particular hopefully NXo)
converges to a root N xo).

The slope of J is of course f(xg), the limit of the slopes of secant lines through Xhus T,
consists of point$x,y) which satisfy the equation

y— F(x0) = f'(x0) (X— o).
In particular, (N(xp),0) is a solution of this equation.

What about the case ov€P It is hard to make Version 2 make sense wiland f (Xo) complex
numbers. Sinc€ = R x R, we now have a picture in 4 dimensions, and the meaning of a tangent
“line” Ty, is unclear. Iff is analytic, we can calculaté/(xg) and hence Version 1 makes formal
sense. But does it mean anything other than formal manipulation? We show the answer is yes.
Namely, we generalize the geometric construction of Version 2 6verR x R in two different,
natural ways. It turns out that precisely wheixg) exists, these constructions are equivalent, and
give the same “answer” (=definition &f(xp)) as Version 1. To do this we present generalizations
of Newton’s method to vector functions (ovej.

2. A SINGLE FUNCTIONS OF TWO REAL VARIABLES

Consider a single function: R2 — R. We apply the reasoning of Version 2 of Newton’s method
and see what happens.

The graph ofy is now a surface ifR3. We letxo (now a 2-vector) be a guess for a rootgpiwe
replace the graph aj(x) by its tangent plandy, atXo. This tangent plane consists of poiriisy)
(wherex is a 2-vector ang a scalar) such that

y—9(x0) = 0g(Xo) - (X—Xo).

Here g is the gradient ofy and on the right we are taking the dot product of vectors. We seek
solutions of the forn(x, 0), or x such that

) —g(%o) = 0g(Xo) - (X—Xo).

However, now we see that there is no unique solution which we couldN¢adl). In fact, unless
Og = 0, in which case we have the same problem as before, the solution set consists exactly of the
(1-dimensional) straight linky, in which Ty, intersects the-plane. Letx* andx*™ be two points
onLy,. By plugging into equation (2) and subtracting, we see [giko) - (x* —x**) = 0. In other
words, Ly, is perpendicular talg(Xo).
Which x on Ly, do we choose foN(xp)? Without further information, any one should work
equally well. It seems reasonable to choose the closest one. In thidN¢age;- xo = o 0g(Xg) for
somed. Substitution in equation (2) yields

I

a=—g(x)/||0g(x0)||> or N(x0) —Xo = —g(x)Jg(%)/||0g(x0)||%

We remark thaflg(xp) points in the direction of steepest asce¥txo) — Xo points opposite to it
if g(Xo) is positive, and|N(xo) — Xo|| = 9(X0)/||Cg(X0)|| is minimal. We remark that this process
works just as well in higher dimension, and thus we have
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Newton’s method—Version 3(steepest descentSuppose gRX — R. The Newton iteration func-
tion is

3) N (%) =xO—”D%((X§3)Hdirectior<Dg<xO>>.

3. TWO FUNCTIONS OF TWO VARIABLES

In our casef : C — C is actually a functiorf : R? — R?. Convention dictates that we label the
variablez and real and complex parts éfby u = u(z) andv = v(z). We seek a common root of
andv. ThusN(z) should satisfy equation (2) with both= u andg = v. We can encode this using

the Jacobian matrix
_ (0du/ox ou/dy
Df(z0) = (c)v/ax av/ay>
using which the two instances of equation (2) can be written together as
—f(20) = Df(20)(N(2) — 20).

Here zy, N(z) and f(z) are taken as real column 2-vectors, and the right hand side is a matrix
product. IfDf(zp) is nonsingular, there is now a unique solution. We state it in greater generality,
in higher dimension and forgetting the complex structure:

Newton’s method—\Version 4(simultaneous equationspuppose fRK — RKand letDf= (a fi /an)
be its Jacobian. The Newton iteration function is

i

4 N(%0) = %o — (Df(x0)) *f ()
(the Jacobian must be nonsingular).

The above Version of Newton’s method is the standard higher-dimensional generalization of
Version 1, found in some advanced calculus textbooks, but not as well known as it perhaps should
be. Further generalizations in this vein are of use in dynamical systems for more general operators.

We remark that the Jacobi@y of a scalar functio : RK — R is a row matrix, the transpose of
the column vectotdg.

An alternative approach to Version 4 is to apply Version 3|f¢|. We continue considering
f : RK — RX and easily verify using the chain rule that

(5) 1110 fll = (f'Df)T = (Df)"f,
and hence we get

Newton’s method—\Version 5(norm steepest descenuppose fRK — RKand let Df= (a fi /an)
be its Jacobian. The Newton iteration function is

ij

il

W(Df)Tf (evaluated at ).

(6) N(Xo) = X0 —
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4. APPLICATION TO COMPLEX FUNCTIONS

We now show that iff is a complex analytic function, then Versions 1, 4, and 5 give the same
formula for N(z). We blithely and without warning switch back an forth from considerfnas
a scalar functionf : C — C and as a vector functiofi : R> — R?, and cheerfully exchange the
notations| - | and|| - || for modulus and norm.

Recall that & x k real matrixM is orthogonal ifMTM = Id. We’'ll call M quasi-orthogonalf
MTM is any scalar matrix, i.e. a scalar multiple of Id. It is easy to see that this happens precisely
whenM is some scalar times an orthogonal matrix, and thi M = r2Id. We now use these two
delightful but not-very-well known facts:

Lemma 1. There is a one-to-one correspondence between complex numbers2zxahdjuasi-
orthogonal matrixes M, given by

X4y «—— X -
y y X
o, (r cosd —rsine)

re )
rsin@ rcoso

Furthermore, under this correspondence, if w is any other complex number, thervia. Here
we have complex multiplication on the left, and matrix multiplication on the right, with w a column
2-vector.

Lemma 2. If f : C — C is a function, then {z) exists precisely when the Jacobian &) is a
quasi-orthogonal matrix, and theri (ko) is the complex number to which it corresponds.

The first of these Lemmas is easily verfied by computation. In the conventional treatment of
complex analysis, the second Lemma is a restatement of the Cauchy-Riemann equations. However,
in Tristan Needham’s wonderful exposition of complex analysis from a geometric Ygith[s
Lemma is taken as the defining property of complex differentiability. The property that the Jacobian
Df be quasi-orthogonal (which Needham calfaplitwis) means precisely that level curvesiof
0(f) andv = O(f) are orthogonal, or that : R? — R? takes infinitesimal squares to infinitesimal
squares. The local rotation and expansion (or “twisting” and “amplification”f ofearz, are
encoded in the polar representation of the complex nurfitgey).

These two Lemmas immediately show that Versions 1 and 4 of Newton’s method are identical.
Next we show that Versions 4 and 5 are identical precisely vileis quasi-orthogonal. Lei be
the determinant oD f(z) and writeDf(z) = pM, whereM is a matrix of determinant 1. Then
equations (4) and (6) become

(1) N(z0) =20 — (1/p)M~1f, and
_ 1]
(8) N(zo) —ZO—WMTf7

which are identical precisely whevi—1 = MT, i.e. whenM is orthogonal.
Figure 1 summarizes the geometry of compufiti@y) when f is complex analytic.

5. REMARKS

1. It is possible to consider Newton’s method for functidnsC — C which are not complex
analytic. However, there are different ways of doing it, in particular Versions 4 and 5. In fact,
these methods work for arbitrary nicely-differentiable functidnsRK — RX, and it would
be interesting to see what sorts of interesting fractal pictures arise from “simple” functions of
this sort somehow analogous t¢z) = 2" — 1.
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FIGURE 1. Determination oN(Z). Diagram shows they-plane only, and as-
sumesu = u(Z) andv = v(zp) are both> 0.

L, foru Ov

2. Our discussion shows that for complex analyftid (z) / f/(z), considered as a vector, points
in the direction ofl]| f|, something which does not seenpriori obvious. In fact, ifM is the
matrix corresponding by Lemma 1 to a complex nunihehen the matrix corresponding to
zisMT. Thus we can rewrite equation (5) as

|f|0/f|=Dff=ff
(matrix multiplication in the middle, complex multiplication on the right) and in particular
anglg|f|) = argumentf) — argumentf’).

3. One could apply Version 3 6|2 or | f|* for anya > 0. Calculation then shows that (provided
f is complex analytic), we get

N(20) = 20— (1/00) F(20)/ ' (20)-

Fora > 1 this has been considered (purely formally) as a so-called “damped Newton method”
(see P]). This shows it has geometric foundation.
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