
THE COMPLEX NEWTON METHOD—3 DIFFERENT WAYS

MARTIN PERGLER

A well-known heuristic for approximating roots of a polynomial or other “nice function” overR
or C is Newton’s method:

Newton’s method—Version 1(formula). Given a differentiable f: R→R, or an analytic f: C→
C, the Newton iteration function is

N(x0) = x0− f (x0)/ f ′(x0)(1)

or given implicitly by

− f (x0) = f ′(x0)(N(x0)−x0)

Given any initial guessx0, we iterate the process to obtain a sequence

xn = Nn(x0) = (N◦N◦ · · · ◦N
︸ ︷︷ ︸

n times

)(x)(= N(xn−1))

If we are lucky, thenN∞(x0) = limn→∞ Nn(x0) exists. In this case, its value is a root off .

There are various questions that come to mind:

1. Where does formula (1) come from?
2. What does the graph of the limit functionN∞ look like?
3. At what points (initial guesses) and why does the limit functionN∞ fail to exist?

The third question is certainly interesting: clearly there is a problem wheneverf ′(x0) = 0, but
there are many other things that can go wrong, including cycles in the sequencexn and issues of
convergence. This falls within the scope of the study of dynamical systems, and there is actually a
fairly extensive qualitative understanding of fixed points, attractors, and cycles of iterated maps over
R (and to a lesser extent overC) in general. However, for Newton’s method applied to “reasonable”
functions f , the points at which such pathologies occur tend to be isolated and so if one is merely
interested in finding any root off , these considerations are not that relevant.

The second question gives rise to fascinating colourings of the complex plane, which arise as
“basin of attraction” graphs for analyticf as simple asf (z) = z3−1. These are among the second
rank of “most famous” fractal images, after the Mandelbrot set. The situation turns out the be pretty
interesting overR as well.

The first question is the focus of this note.

1. WHAT DOES IT MEAN?

Over R, the derivation of Newton’s method can be found in almost any elementary calculus
textbook. The formula (1) is what follows from the following geometric principle:
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Newton’s method—Version 2(geometric description). To obtain N(x0), replace the graph of f(x)
by its tangent line Tx0 at x= x0. Let N(x0) be the point of intersection of Tx0 with the x-axis.

For x close to x0, Tx0 should be a “good” approximation to f(x), so if N(x0) is close to x0,
N(x0) should be close to a root of f . The heuristic is that even if N(x0) is not terribly close to x0,
perhaps N(x0) is a better approximation to a root of f than x0 is, and in particular hopefully Nn(x0)
converges to a root N∞(x0).

The slope of Tx0 is of course f′(x0), the limit of the slopes of secant lines through x0. Thus Tx0

consists of points(x,y) which satisfy the equation

y− f (x0) = f ′(x0)(x−x0).

In particular, (N(x0),0) is a solution of this equation.

What about the case overC? It is hard to make Version 2 make sense withx0 and f (x0) complex
numbers. SinceC = R×R, we now have a picture in 4 dimensions, and the meaning of a tangent
“line” Tx0 is unclear. If f is analytic, we can calculatef ′(x0) and hence Version 1 makes formal
sense. But does it mean anything other than formal manipulation? We show the answer is yes.
Namely, we generalize the geometric construction of Version 2 overC = R×R in two different,
natural ways. It turns out that precisely whenf ′(x0) exists, these constructions are equivalent, and
give the same “answer” (=definition ofN(x0)) as Version 1. To do this we present generalizations
of Newton’s method to vector functions (overR).

2. A SINGLE FUNCTIONS OF TWO REAL VARIABLES

Consider a single functiong : R2→R. We apply the reasoning of Version 2 of Newton’s method
and see what happens.

The graph ofg is now a surface inR3. We letx0 (now a 2-vector) be a guess for a root ofg. We
replace the graph ofg(x) by its tangent planeTx0 at x0. This tangent plane consists of points(x,y)
(wherex is a 2-vector andy a scalar) such that

y−g(x0) = ∇g(x0) · (x−x0).

Here∇g is the gradient ofg and on the right we are taking the dot product of vectors. We seek
solutions of the form(x,0), or x such that

−g(x0) = ∇g(x0) · (x−x0).(2)

However, now we see that there is no unique solution which we could callN(x0). In fact, unless
∇g = 0, in which case we have the same problem as before, the solution set consists exactly of the
(1-dimensional) straight lineLx0 in which Tx0 intersects thex-plane. Letx∗ andx∗∗ be two points
on Lx0. By plugging into equation (2) and subtracting, we see that∇g(x0) · (x∗−x∗∗) = 0. In other
words,Lx0 is perpendicular to∇g(x0).

Which x on Lx0 do we choose forN(x0)? Without further information, any one should work
equally well. It seems reasonable to choose the closest one. In this case,N(x0)−x0 = α∇g(x0) for
someα. Substitution in equation (2) yields

α =−g(x0)/||∇g(x0)||2 or N(x0)−x0 =−g(x0)∇g(x0)/||∇g(x0)||2.

We remark that∇g(x0) points in the direction of steepest ascent,N(x0)− x0 points opposite to it
if g(x0) is positive, and||N(x0)− x0|| = g(x0)/||∇g(x0)|| is minimal. We remark that this process
works just as well in higher dimension, and thus we have
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Newton’s method—Version 3(steepest descent). Suppose g: Rk→R. The Newton iteration func-
tion is

N(x0) = x0−
g(x0)

||∇g(x0)||
direction(∇g(x0)).(3)

3. TWO FUNCTIONS OF TWO VARIABLES

In our case,f : C→ C is actually a functionf : R2 → R2. Convention dictates that we label the
variablez and real and complex parts off by u = u(z) andv = v(z). We seek a common root ofu
andv. ThusN(z0) should satisfy equation (2) with bothg = u andg = v. We can encode this using
the Jacobian matrix

D f (z0) =
(

∂u/∂x ∂u/∂y
∂v/∂x ∂v/∂y

)

using which the two instances of equation (2) can be written together as

− f (z0) = D f (z0)(N(z)−z0).

Herez0, N(z0) and f (z0) are taken as real column 2-vectors, and the right hand side is a matrix
product. IfD f (z0) is nonsingular, there is now a unique solution. We state it in greater generality,
in higher dimension and forgetting the complex structure:

Newton’s method—Version 4(simultaneous equations). Suppose f: Rk→Rk and let D f=
(

∂ fi/∂x j
)

i, j
be its Jacobian. The Newton iteration function is

N(x0) = x0− (D f (x0))−1 f (x0)(4)

(the Jacobian must be nonsingular).

The above Version of Newton’s method is the standard higher-dimensional generalization of
Version 1, found in some advanced calculus textbooks, but not as well known as it perhaps should
be. Further generalizations in this vein are of use in dynamical systems for more general operators.

We remark that the JacobianDg of a scalar functiong : Rk →R is a row matrix, the transpose of
the column vector∇g.

An alternative approach to Version 4 is to apply Version 3 to|| f ||. We continue considering
f : Rk → Rk and easily verify using the chain rule that

|| f ||∇|| f ||= ( f TD f )T = (D f )T f ,(5)

and hence we get

Newton’s method—Version 5(norm steepest descent). Suppose f: Rk→Rk and let D f=
(

∂ fi/∂x j
)

i, j
be its Jacobian. The Newton iteration function is

N(x0) = x0−
|| f ||2

||(D f )T f ||2
(D f )T f (evaluated at x0).(6)
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4. APPLICATION TO COMPLEX FUNCTIONS

We now show that iff is a complex analytic function, then Versions 1, 4, and 5 give the same
formula for N(z0). We blithely and without warning switch back an forth from consideringf as
a scalar functionf : C → C and as a vector functionf : R2 → R2, and cheerfully exchange the
notations| · | and|| · || for modulus and norm.

Recall that ak× k real matrixM is orthogonal ifMTM = Id. We’ll call M quasi-orthogonalif
MTM is any scalar matrix, i.e. a scalar multiple of Id. It is easy to see that this happens precisely
whenM is some scalarr times an orthogonal matrix, and thenMTM = r2 Id. We now use these two
delightful but not-very-well known facts:

Lemma 1. There is a one-to-one correspondence between complex numbers z and2× 2 quasi-
orthogonal matrixes M, given by

x+ iy←→
(

x −y
y x

)

reiθ ←→
(

r cosθ −r sinθ
r sinθ r cosθ

)

Furthermore, under this correspondence, if w is any other complex number, then zw= Mw. Here
we have complex multiplication on the left, and matrix multiplication on the right, with w a column
2-vector.

Lemma 2. If f : C → C is a function, then f′(z0) exists precisely when the Jacobian D f(z0) is a
quasi-orthogonal matrix, and then f′(z0) is the complex number to which it corresponds.

The first of these Lemmas is easily verfied by computation. In the conventional treatment of
complex analysis, the second Lemma is a restatement of the Cauchy-Riemann equations. However,
in Tristan Needham’s wonderful exposition of complex analysis from a geometric vein [?], this
Lemma is taken as the defining property of complex differentiability. The property that the Jacobian
D f be quasi-orthogonal (which Needham callsamplitwist) means precisely that level curves ofu =
ℜ( f ) andv = ℑ( f ) are orthogonal, or thatf : R2 → R2 takes infinitesimal squares to infinitesimal
squares. The local rotation and expansion (or “twisting” and “amplification”) off nearz0 are
encoded in the polar representation of the complex numberf ′(z0).

These two Lemmas immediately show that Versions 1 and 4 of Newton’s method are identical.
Next we show that Versions 4 and 5 are identical precisely whenD f is quasi-orthogonal. Letρ be
the determinant ofD f (z0) and writeD f (z0) = ρM, whereM is a matrix of determinant 1. Then
equations (4) and (6) become

N(z0) =z0− (1/ρ)M−1 f , and(7)

N(z0) =z0−
|| f ||2

ρ||MT f ||2
MT f ,(8)

which are identical precisely whenM−1 = MT , i.e. whenM is orthogonal.

Figure 1 summarizes the geometry of computingN(z0) when f is complex analytic.

5. REMARKS

1. It is possible to consider Newton’s method for functionsf : C → C which are not complex
analytic. However, there are different ways of doing it, in particular Versions 4 and 5. In fact,
these methods work for arbitrary nicely-differentiable functionsf : Rk → Rk, and it would
be interesting to see what sorts of interesting fractal pictures arise from “simple” functions of
this sort somehow analogous tof (z) = zm−1.
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FIGURE 1. Determination ofN(z0). Diagram shows thez0-plane only, and as-
sumesu = u(z0) andv = v(z0) are both> 0.
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2. Our discussion shows that for complex analyticf , f (z)/ f ′(z), considered as a vector, points
in the direction of∇| f |, something which does not seema priori obvious. In fact, ifM is the
matrix corresponding by Lemma 1 to a complex numberz, then the matrix corresponding to
z is MT . Thus we can rewrite equation (5) as

| f |∇| f |= D f f = f ′ f

(matrix multiplication in the middle, complex multiplication on the right) and in particular

angle(∇| f |) = argument( f )−argument( f ′).

3. One could apply Version 3 to| f |2 or | f |α for anyα > 0. Calculation then shows that (provided
f is complex analytic), we get

N(z0) = z0− (1/α) f (z0)/ f ′(z0).

Forα > 1 this has been considered (purely formally) as a so-called “damped Newton method”
(see [?]). This shows it has geometric foundation.
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