

0

1

1.1

1.2

1.3

1.4

1.5

2

3

3.1

3.2

3.3

4

4.1

4.2

4.3

5

5.1

5.2

5.3

5.4

5.5

5.6

6

7

7.1

7.2

Table	of	Contents
Introduction

Getting	Started

Download	Python

Open	IDLE

Write	a	Python	Script

Screw	Things	Up

Store	a	Variable

Interlude:	Leave	yourself	helpful	notes

Fundamentals:	Strings	and	Methods

Mess	Around	with	Your	Words

Use	Objects	and	Methods

Assignment:	pick	apart	your	user's	input

Fundamentals:	Working	with	Strings

Streamline	Your	Print	Statements

Find	a	String	in	a	String

Assignment:	Turn	your	user	into	a	l33t	h4x0r

Fundamentals:	Functions	and	Loops

Assignment:	Perform	calculations	on	user	input

Create	Your	Own	Functions

Functions	Summary

Assignment:	Convert	temperatures

Run	in	circles

Assignment:	Track	your	investments

Interlude:	Debug	your	code

Fundamentals:	Conditional	Logic

Compare	Values

Add	Some	Logic

Real	Python	Part	1:	Introduction	to	Python

2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

9

9.1

9.2

9.3

9.4

9.5

10

10.1

10.2

11

11.1

11.2

11.3

12

Control	the	Flow	of	Your	Program

Assignment:	Find	the	factors	of	a	number

Break	Out	of	the	Pattern

Recover	from	errors

Simulate	Events	and	Calculate	Probabilities

Assignment:	Simulate	an	election

Assignment:	Simulate	a	coin	toss	experiment

Fundamentals:	Lists	and	Dictionaries

Assignment:	List	of	lists

Assignment:	Wax	poetic

Make	Permanent	Lists

Store	Relationships	in	Dictionaries

Assignment:	Capital	city	loop

Assignment:	Cats	with	hats

Assignment:	Reviewing	the	fundamentals

Assignment:	Summary

File	Input	and	Output

Use	More	Complicated	Folder	Structures

Assignment:	Use	pattern	matching	to	delete	files

Read	and	Write	CSV	Data

Assignment:	Create	a	high	scores	list	from	CSV	data

Assignment:	Split	a	CSV	file

Interlude:	Install	Packages

Installing	via	pip

Installing	from	Source

Interact	with	PDF	files

Manipulate	PDF	Files

Assignment:	Add	a	cover	sheet	to	a	PDF	file

Create	PDF	Files

SQL	Database	Connections

Real	Python	Part	1:	Introduction	to	Python

3

12.1

13

13.1

13.2

13.3

13.4

14

14.1

14.2

15

15.1

15.2

15.3

16

17

17.1

17.2

17.3

18

18.1

18.2

18.3

18.4

18.5

18.6

19

19.1

19.2

19.3

19.4

Use	Other	SQL	Variants

Interacting	with	the	Web

Scrape	and	Parse	Text	From	Websites

Use	an	HTML	Parser	to	Scrape	Websites

Interact	with	HTML	Forms

Interact	with	Websites	in	Real-time

Scientific	Computing	and	Graphing

Use	NumPy	for	Matrix	Manipulation

Use	matplotlib	for	Plotting	Graphs

Graphical	User	Interface

Add	GUI	elements	with	EasyGUI

Assignment:	Use	GUI	elements	to	help	a	user	modify	files

Create	GUI	Application	with	Tkinter

Final	Thoughts

Appendix	A:	Installing	Python

Check	Current	Version

Install	Python

Verify	Install

Appendix	B:	Regular	Expressions

Basic	Syntax

When	Should	You	Use	Regular	Expressions?

Functions

More	Practice

Assignment:	Data	cleaning	with	regular	expressions

Assignment:	Reviewing	regular	expressions

Appendix	C:	Primer	on	Object-Oriented	Programming

Classes

Instances

Define	a	Class

Instantiating

Real	Python	Part	1:	Introduction	to	Python

4

19.5

19.6

19.7

19.8

19.9

19.10

20

Instance	Methods

Inheritance

Assignment:	Comprehension	check

Assignment:	Model	a	farm

Assignment:	Github	with	class

Conclusion

Acknowledgements

Real	Python	Part	1:	Introduction	to	Python

5

Real	Python	Part	1:	Introduction	to	Python	by	Fletcher	Heisler.
Copyright	2016	Real	Python.	All	rights	reserved.

Introduction
Whether	you're	new	to	programming	or	a	professional	code	monkey	looking	to	dive	into
a	new	language,	this	course	will	teach	you	all	of	the	practical	Python	that	you	need	to
get	started	on	projects	on	your	own.

Real	Python	emphasizes	real-world	programming	techniques,	which	are	illustrated
through	interesting,	useful	examples.	No	matter	what	your	ultimate	goals	may	be,	if	you
work	with	a	computer	at	all,	you	will	soon	be	finding	endless	ways	to	improve	your	life	by
automating	tasks	and	solving	problems	through	Python	programs	that	you	create.

Python	is	open-source	freeware,	meaning	you	can	download	it	for	free	and	use	it	for	any
purpose.	It	also	has	a	great	support	community	that	has	built	a	number	of	additional	free
tools.	Need	to	work	with	PDF	documents	in	Python?	There's	a	free	package	for	that.
Want	to	collect	data	from	webpages?	No	need	to	start	from	scratch!

Python	was	built	to	be	easier	to	use	than	other	programming	languages.	It's	usually
much	easier	to	read	Python	code	and	MUCH	faster	to	write	code	in	Python	than	in	other
languages.

For	instance,	here's	some	simple	code	written	in	C,	another	commonly	used
programming	language:

#include	<stdio.h>

int	main(void)

{

		printf	("Hello,	world\n");

}

All	the	program	does	is	print	"Hello,	world"	on	the	screen.	That	was	a	lot	of	work	to	print
one	phrase!	Here's	the	same	code	in	Python:

Real	Python	Part	1:	Introduction	to	Python

6Introduction

print("Hello,	world")

Simple,	right?	Easy,	faster,	more	readable.

At	the	same	time,	Python	has	all	the	functionality	of	other	languages	and	more.	You
might	be	surprised	how	many	professional	products	are	built	on	Python	code:	Gmail,
Google	Maps,	YouTube,	reddit,	Spotify,	turntable.fm,	Yahoo!	Groups,	and	the	list	goes
on…	And	if	it's	powerful	enough	for	both	NASA	and	the	NSA,	it's	good	enough	for	us.

Why	this	course?
There	are	tons	of	books	and	tutorials	out	there	for	learning	Python	already.	However,
most	of	the	resources	out	generally	have	two	main	problems:

They	aren't	practical.
They	aren't	interesting.

Most	books	are	so	preoccupied	with	covering	every	last	possible	variation	of	every
command	that	it's	easy	to	get	lost	in	the	details.	In	the	end,	most	of	them	end	up	looking
more	like	the	Python	documentation	pages.	This	is	great	as	reference	material,	but	it's	a
horrible	way	to	learn	a	programming	language.	Not	only	do	you	spend	most	of	your	time
learning	things	you'll	never	use,	but	it	isn't	any	fun!

This	course	is	built	on	the	80/20	principle.	We	will	cover	the	commands	and	techniques
used	in	the	vast	majority	of	cases	and	focus	on	how	to	program	real-world	solutions	to
problems	that	ordinary	people	actually	want	to	solve.

This	way,	I	guarantee	that	you	will:

Learn	useful	techniques	much	faster
Spend	less	time	struggling	with	unimportant	complications
Find	more	practical	uses	for	Python	in	your	own	life
Have	more	fun	in	the	process!

If	you	want	to	become	a	serious,	professional	Python	programmer,	this	course	won't	be
enough	by	itself	-	but	it	will	still	be	the	best	starting	point.	Once	you've	mastered	the
material	in	this	course,	you	will	have	gained	a	strong	enough	foundation	that	venturing
out	into	more	advanced	territory	on	your	own	will	be	a	breeze.

So	dive	in!	Learn	to	program	in	a	widely	used,	free	language	that	can	do	more	than	you
ever	thought	was	possible.

Real	Python	Part	1:	Introduction	to	Python

7Introduction

https://docs.python.org/3.5/library/index.html

How	to	use	this	course
The	first	half	of	this	course	is	a	quick	yet	thorough	overview	of	all	the	Python
fundamentals.	You	do	not	need	any	prior	experience	with	programming	to	get	started.
The	second	half,	meanwhile,	is	focused	on	solving	interesting,	real-world	problems	in	a
practical	manner.

For	the	most	part,	you	should	approach	the	topics	in	the	first	half	of	this	course	in	the
same	order	as	they	are	presented.	This	is	less	true	of	the	second	half,	which	covers	a
number	of	mostly	non-overlapping	topics,	although	the	chapters	are	generally	increasing
in	difficulty	throughout.	If	you	are	a	more	experienced	programmer,	then	you	may	find
yourself	heading	toward	the	back	of	the	course	right	away	-	but	don't	neglect	getting	a
strong	foundation	in	the	basics	first!

Each	chapter	section	is	followed	by	review	exercises	to	help	you	make	sure	that	you've
mastered	all	the	topics	covered.	There	are	also	a	number	of	assignments,	which	are
more	involved	and	usually	require	you	to	tie	together	a	number	of	different	concepts
from	previous	chapters.	The	practice	files	that	accompany	this	course	also	include
solution	scripts	to	the	assignments	as	well	as	some	of	the	trickier	exercises	-	but	to	get
the	most	out	of	them,	you	should	try	your	best	to	solve	the	assignment	problems	on	your
own	before	looking	at	the	example	solutions.

This	course	does	move	quickly,	however,	so	if	you're	completely	new	to	programming,
you	may	want	to	supplement	the	first	few	chapters	with	additional	practice.	I	highly
recommend	working	through	the	beginning	Python	lessons	available	for	free	at	the
Codecademy	site	while	you	make	your	way	through	the	beginning	of	this	material	as	the
best	way	to	make	sure	that	you	have	all	the	basics	down.

Finally,	if	you	have	any	questions	or	feedback	about	the	course,	you're	always	welcome
to	contact	me	directly.

Learning	by	doing

Since	the	underlying	philosophy	is	learning	by	doing,	do	just	that:	Type	in	each	and
every	code	snippet	presented	to	you.	Do	not	copy	and	paste.

You	will	learn	the	concepts	better	and	pick	up	the	syntax	faster	if	you	type	each	line	of
code	out	yourself.	Plus,	if	you	screw	up	-	which	will	happen	over	and	over	again	-	the
simple	act	of	correcting	typos	will	help	you	learn	how	to	debug	your	code.	Finish	all

Real	Python	Part	1:	Introduction	to	Python

8Introduction

http://www.codecademy.com/tracks/python
mailto:Fletcher@RealPython.com

review	exercises	and	give	each	homework	assignment	and	the	larger	projects	a	try	on
your	own	before	getting	help	from	outside	resources.

With	enough	practice,	you	will	learn	this	material	-	and	hopefully	have	fun	along	the	way!

How	long	will	it	take	to	finish	this	course?

It	depends	on	your	background.	Those	familiar	with	another	language	could	finish	the
course	in	as	little	as	35	to	40	hours,	while	those	just	starting,	with	no	experience,	may
spend	up	to	100	hours.	Take	your	time.

Course	Repository
This	course	has	an	accompanying	repository	containing	the	course	source	code	as	well
as	the	answers	to	exercises	and	assignments.	Broken	up	by	chapter,	you	can	check
your	code	against	the	code	in	the	repository	after	you	finish	each	chapter.

You	can	download	the	course	files	directly	from	the	repository.	Press	the
'Download	ZIP'	button	which	is	located	at	the	right-side	of	the	page.	This	allows
you	to	download	the	most	recent	version	of	the	code	as	a	zip	archive.	Be	sure	to
download	the	updated	code	for	each	release.

License
This	e-book	is	copyrighted	and	licensed	under	a	Creative	Commons	Attribution-
NonCommercial-NoDerivs	3.0	Unported	License.	This	means	that	you	are	welcome	to
share	this	book	and	use	it	for	any	non-commercial	purposes	so	long	as	the	entire	book
remains	intact	and	unaltered.	That	being	said,	if	you	have	received	this	copy	for	free	and
have	found	it	helpful,	I	would	very	much	appreciate	if	you	purchased	a	copy	of	your	own.

The	example	Python	scripts	associated	with	this	book	should	be	considered	open
content.	This	means	that	anyone	is	welcome	to	use	any	portion	of	the	code	for	any
purpose.

Conventions

Formatting

Real	Python	Part	1:	Introduction	to	Python

9Introduction

https://github.com/realpython/book1-exercises
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
https://www.realpython.com/

Code	blocks	will	be	used	to	present	example	code.

print(“Hello	world!”)

Terminal	commands	follow	the	Unix	format:

$	python	hello-world.py

(dollar	signs	are	not	part	of	the	command)

Italic	text	will	be	used	to	denote	a	file	name:

hello-world.py.

Bold	text	will	be	used	to	denote	a	new	or	important	term:

Important	term:	This	is	an	example	of	what	an	important	term	should	look	like.

NOTES,	WARNINGS,	and	SEE	ALSO	boxes	appear	as
follows:

Real	Python	Part	1:	Introduction	to	Python

10Introduction

NOTE:	This	is	a	note	filled	in	with	bacon	impsum	text.	Bacon	ipsum	dolor	sit	amet
t-bone	flank	sirloin,	shankle	salami	swine	drumstick	capicola	doner	porchetta
bresaola	short	loin.	Rump	ham	hock	bresaola	chuck	flank.	Prosciutto	beef	ribs
kielbasa	pork	belly	chicken	tri-tip	pork	t-bone	hamburger	bresaola	meatball.
Prosciutto	pork	belly	tri-tip	pancetta	spare	ribs	salami,	porchetta	strip	steak	rump
beef	filet	mignon	turducken	tail	pork	chop.	Shankle	turducken	spare	ribs	jerky
ribeye.

WARNING:	This	is	a	warning	also	filled	in	with	bacon	impsum.	Bacon	ipsum	dolor
sit	amet	t-bone	flank	sirloin,	shankle	salami	swine	drumstick	capicola	doner
porchetta	bresaola	short	loin.	Rump	ham	hock	bresaola	chuck	flank.	Prosciutto
beef	ribs	kielbasa	pork	belly	chicken	tri-tip	pork	t-bone	hamburger	bresaola
meatball.	Prosciutto	pork	belly	tri-tip	pancetta	spare	ribs	salami,	porchetta	strip
steak	rump	beef	filet	mignon	turducken	tail	pork	chop.	Shankle	turducken	spare
ribs	jerky	ribeye.

SEE	ALSO:	This	is	a	see	also	box	with	more	tasty	impsum.	Bacon	ipsum	dolor	sit
amet	t-bone	flank	sirloin,	shankle	salami	swine	drumstick	capicola	doner	porchetta
bresaola	short	loin.	Rump	ham	hock	bresaola	chuck	flank.	Prosciutto	beef	ribs
kielbasa	pork	belly	chicken	tri-tip	pork	t-bone	hamburger	bresaola	meatball.
Prosciutto	pork	belly	tri-tip	pancetta	spare	ribs	salami,	porchetta	strip	steak	rump
beef	filet	mignon	turducken	tail	pork	chop.	Shankle	turducken	spare	ribs	jerky
ribeye.

Errata
I	welcome	ideas,	suggestions,	feedback,	and	the	occasional	rant.	Did	you	find	a	topic
confusing?	Or	did	you	find	an	error	in	the	text	or	code?	Did	I	omit	a	topic	you	would	love
to	know	more	about.	Whatever	the	reason,	good	or	bad,	please	send	in	your	feedback.

You	can	find	my	contact	information	on	the	Real	Python	website.	Or	submit	an	issue	on
the	Real	Python	official	support	repository.	Thank	you!

NOTE:	The	code	found	in	this	course	has	been	tested	on	Mac	OS	X	v.	10.10.5,
Windows	7	and	10,	Linux	Mint	17,	and	Ubuntu	14.04.3	LTS.

Real	Python	Part	1:	Introduction	to	Python

11Introduction

http://www.realpython.com
https://github.com/realpython/support

Getting	Started
Let's	start	with	the	basics...

Real	Python	Part	1:	Introduction	to	Python

12Getting	Started

Download	Python
Before	we	can	do	anything,	you	need	to	download	Python.	Even	if	you	already	have
Python	on	your	computer,	make	sure	that	you	have	the	correct	version.	Python	3.5	is	the
version	used	in	this	course	and	by	most	of	the	rest	of	the	world.

Mac	users:	You	already	have	a	version	of	Python	installed	by	default,	but	it's	not	quite
the	same	as	the	standard	installation.	You	should	still	download	Python	3.5.1	as	directed
below.	Otherwise,	you	might	run	into	problems	later	when	trying	to	install	some
additional	functionality	in	Python	or	running	code	that	involves	graphics	windows.

Linux	users:	You	might	already	have	at	least	Python	2.7.6	installed	by	default.	Open
your	Terminal	application	and	type		python	version		or		python3	version		to	find	out.	You
should	go	ahead	and	update	to	the	latest	version.

If	you	need	to,	go	to	http://www.python.org/download/	to	download	Python	3.5.1	for	your
operating	system	and	install	the	program.

NOTE:	For	further	assistance,	please	refer	to	Appendix	A	for	a	basic	tutorial	on
installing	Python.

Real	Python	Part	1:	Introduction	to	Python

13Download	Python

https://www.python.org/downloads/release/python-350/
http://www.python.org/download/

Open	IDLE
We'll	be	using	IDLE	(Interactive	DeveLopment	Environment)	to	write	our	Python	code.

IDLE	is	a	simple	editing	program	that	comes	automatically	installed	with	Python	on
Windows	and	Mac,	and	it	will	make	our	lives	much	easier	while	we're	coding.

You	could	write	Python	scripts	in	any	program	from	a	basic	text	editor	to	a	very	complex
development	environment	(and	many	professional	coders	use	more	advanced	setups),
but	IDLE	is	simple	to	use	and	will	easily	provide	all	the	functionality	we	need.	I
personally	use	a	more	advanced	text	editor	called	Sublime	Text	for	most	projects.

To	open	IDLE...

OS	X

Go	to	your	Applications	folder	and	click	on	"IDLE"	from	the	"Python	3.5"	folder	to	start
running	IDLE.	Alternatively,	you	can	type	"IDLE"	(without	quotes)	into	your	Terminal
window	to	launch	IDLE.

Windows

Go	to	your	start	menu	and	click	on	"IDLE	(Python	GUI)"	from	the	"Python	3.5"	program
folder	to	open	IDLE.	You	can	also	type	"IDLE"	into	the	search	bar.

Linux

I	recommend	that	you	install	IDLE	to	follow	along	with	this	course.	You	could	use	Vim	or
Emacs,	but	they	will	not	have	the	same	built-in	debugging	features.

To	install	IDLE	with	admin	privileges:

On	Ubuntu/Debian,	type:		sudo	apt-get	install	idle	
On	Fedora/Red	Hat/RHEL/CentOS,	type:		sudo	yum	install	python-tools	
On	SUSE,	you	can	search	for	IDLE	via	"install	software"	through	YaST.

Opening	IDLE,	you	will	see	a	brief	description	of	Python,	followed	by	a	prompt:

Real	Python	Part	1:	Introduction	to	Python

14Open	IDLE

https://docs.python.org/3.5/library/idle.html
http://pydev.org/
https://www.jetbrains.com/pycharm/
http://www.activestate.com/komodo-ide
http://www.sublimetext.com/
http://sontek.net/blog/detail/turning-vim-into-a-modern-python-ide
http://gabrielelanaro.github.com/emacs-for-python/

>>>

We're	ready	to	program!

Real	Python	Part	1:	Introduction	to	Python

15Open	IDLE

Write	a	Python	script
The	window	we	have	open	at	the	moment	is	IDLE's	interactive	window;	usually	this
window	will	just	show	us	results	when	we	run	programs	that	we've	written,	but	we	can
also	enter	Python	code	into	this	window	directly.	Go	ahead	and	try	typing	some	basic
math	into	the	interactive	window	at	the	prompt	-	when	you	hit	enter,	it	should	evaluate
your	calculation,	display	the	result	and	prompt	you	for	more	input:

>>>	1+1

2

>>>

NOTE:	A	Python	prompt	makes	for	a	great	calculator	if	you	need	to	quickly	crunch
some	numbers	and	don't	have	a	calculator	handy.

Let's	try	out	some	actual	code.	The	standard	program	to	display	"Hello,	world"	on	the
screen	is	just	that	simple	in	Python.	Tell	the	interactive	window	to	print	the	phrase	by
using	the	print	command	like	so:

>>>	print("Hello,	world")

Hello,	world

>>>

NOTE:	If	you	want	to	get	to	previous	lines	you've	typed	into	the	interactive	window
without	typing	them	out	again	or	copying	and	pasting,	you	can	use	the	pair	of
shortcut	keys	ALT+P	(or	on	a	Mac,	CTRL+P).	Each	time	you	hit	ALT+P,	IDLE	will
fill	in	the	previous	line	of	code	for	you.	You	can	then	type	ALT+N	(OS	X:CTRL+N)
to	cycle	back	to	the	next	most	recent	line	of	code.

Normally	we	will	want	to	run	more	than	one	line	of	code	at	a	time	and	save	our	work	so
that	we	can	return	to	it	later.	To	do	this,	we	need	to	create	a	new	script.

From	the	menu	bar,	choose	"File	->	New	Window"	to	generate	a	blank	script.	You	should
rearrange	this	window	and	your	interactive	results	window	so	that	you	can	see	them
both	at	the	same	time.

Type	the	same	line	of	code	as	before,	but	put	it	in	your	new	script:

print("Hello,	world")

Real	Python	Part	1:	Introduction	to	Python

16Write	a	Python	Script

WARNING:	If	you	just	copy	and	paste	from	the	interactive	window	into	the	script,
make	sure	you	never	include	the	">>>	"	part	of	the	line.	That's	just	the	window
asking	for	your	input;	it	isn't	part	of	the	actual	code.

In	order	to	run	this	script,	we	need	to	save	it	first.	Choose	"File	->	Save	As	.	.	.",	name
the	file	hello_world.py	and	save	it	somewhere	you'll	be	able	to	find	it	later.	The	".py"
extension	lets	IDLE	know	that	it's	a	Python	script.

NOTE:	Notice	that	print	and	"Hello,	world"	appear	in	different	colors	to	let	you
know	that	print	is	a	command	and	"Hello,	world"	is	a	string	of	characters.	If	you
save	the	script	as	something	other	than	a	".py"	file	(or	if	you	don't	include	the	".py"
extension),	this	coloring	will	disappear	and	everything	will	turn	black,	letting	you
know	that	the	file	is	no	longer	recognized	as	a	Python	script.

Now	that	the	script	has	been	saved,	all	we	have	to	do	in	order	to	run	the	program	is	to
select	"Run	->	Run	Module"	from	the	script	window	(or	hit	F5,	or	try	shift+command+f5),
and	we'll	see	the	result	appear	in	the	interactive	results	window	just	like	it	did	before:

>>>

Hello,	world

>>>

To	open	and	edit	a	program	later	on,	just	open	up	IDLE	again	and	select	"File	->
Open...",	then	browse	to	and	select	the	script	to	open	it	in	a	new	script	window.

Double-clicking	on	a	".py"	script	will	run	that	script,	usually	closing	the	window	once	the
script	is	done	running	(before	you	can	even	see	what	happened).	If	you	instead	want	to
edit	the	script	in	IDLE,	you	can	usually	right-click	(OS	X:	control-click)	on	the	file	and
choose	to	"Edit	with	IDLE"	to	open	the	script.

Linux	users:	Read	this	overview	first	(especially	section	2.2.2)	if	you	want	to	be	able	to
run	Python	scripts	outside	of	the	editor.

NOTE:	You	might	see	something	like	the	following	line	in	the	interactive	window
when	you	run	or	re-run	a	script:	>>>	======================	RESTART
======================

This	is	just	IDLE's	way	of	letting	you	know	that	everything	after	this	line	is	the
result	of	the	new	script	that	you	are	just	about	to	run.	Otherwise,	if	you	ran	one
script	after	another	(or	one	script	again	after	itself),	it	might	not	be	clear	what
output	belongs	to	which	run	of	which	script.

Real	Python	Part	1:	Introduction	to	Python

17Write	a	Python	Script

https://docs.python.org/3.5/tutorial/interpreter.html

Real	Python	Part	1:	Introduction	to	Python

18Write	a	Python	Script

Screw	Things	Up
Everybody	makes	mistakes	-	especially	while	programming.	In	case	you	haven't	made
any	mistakes	yet,	let's	get	a	head	start	on	that	and	mess	something	up	on	purpose	to
see	what	happens.

Using	IDLE,	there	are	two	main	types	of	errors	you'll	experience.	The	most	common	is	a
syntax	error,	which	usually	means	that	you've	typed	something	incorrectly.

Let's	try	changing	the	contents	of	the	script	to:

print("Hello,	world)

Here	we've	just	removed	the	ending	quotation	mark,	which	is	of	course	a	mistake	-	now
Python	won't	be	able	to	tell	where	the	string	of	text	ends.	Save	your	script	and	try
running	it.	What	happens?

...You	can't	run	it!	IDLE	is	smart	enough	to	realize	there's	an	error	in	your	code,	and	it
stops	you	from	even	trying	to	run	the	buggy	program.	In	this	case,	it	says:	"EOL	while
scanning	string	literal."	EOL	stands	for	"End	Of	Line",	meaning	that	Python	got	all	the
way	to	the	end	of	the	line	and	never	found	the	end	of	your	string	of	text.

IDLE	even	highlights	the	place	where	the	error	occurred	using	a	different	color	and
moves	your	cursor	to	the	location	of	the	error.	Handy!

The	other	sort	of	error	that	you'll	experience	is	the	type	that	IDLE	can't	catch	for	you	until
your	code	is	already	running.	Try	changing	the	code	in	your	script	to:

print(Hello,	world)

Now	that	we've	entirely	removed	the	quotation	marks	from	the	phrase.	Notice	how	the
text	changes	color	when	we	do	that?	IDLE	is	letting	us	know	that	this	is	no	longer	a
string	of	text	that	we	will	be	printing,	but	something	else.	What	is	our	code	doing	now?
Well,	save	the	script	and	try	to	run	it	...

The	interactive	window	will	pop	up	with	ugly	red	text	that	looks	something	like	this:

Real	Python	Part	1:	Introduction	to	Python

19Screw	Things	Up

>>>

Traceback	(most	recent	call	last):

File	"[path	to	your	script]\hello	world.py",	line	1,	in	<module>

print	Hello,	world

NameError:	name	'Hello'	is	not	defined

>>>

So	what	happened?	Python	is	telling	us	a	few	things:

An	error	occurred	-	specifically,	Python	calls	it	a		NameError	
The	error	happened	on	line	1	of	the	script
The	line	that	generated	the	error	was:	print	Hello,	world
The	specific	error	was:	name	'Hello'	is	not	defined

This	is	called	a	run-time	error	since	it	only	occurs	once	the	programming	is	already
running.	Since	we	didn't	put	quotes	around	Hello,	world,	Python	didn't	know	that	this	was
text	we	wanted	to	print.	Instead,	it	thought	we	were	referring	to	two	variables	that	we
wanted	to	print.	The	first	variable	it	tried	to	print	was	something	named	"Hello"	-	but	since
we	hadn't	defined	a	variable	named	"Hello",	our	program	crashed.

Review	exercises:

1.	 Write	a	script	that	IDLE	won't	let	you	run	because	it	has	a	syntax	error
2.	 Write	a	script	that	will	only	crash	your	program	once	it	is	already	running	because	it

has	a	run-time	error

Real	Python	Part	1:	Introduction	to	Python

20Screw	Things	Up

Store	a	Variable
Let's	try	writing	a	different	version	of	the	previous	script.	Here	we'll	use	a	variable	to
store	our	text	before	printing	the	text	to	the	screen:

phrase	=	"Hello,	world"

print(phrase)

Notice	the	difference	in	where	the	quotation	marks	go	from	our	previous	script.	We	are
creating	a	variable	named	phrase	and	assigning	it	the	value	of	the	string	of	text	"Hello,
world".	We	then	print	the	phrase	to	the	screen.	Try	saving	this	script	and	running	these
two	lines;	you	should	see	the	same	output	as	before:

>>>

Hello,	world

>>>

Notice	that	in	our	script	we	didn't	say:

print("phrase")

Using	quotes	here	would	just	print	the	word	"phrase"	instead	of	printing	the	contents	of
the	variable	named	phrase.

NOTE:	Phrases	that	appear	in	quotation	marks	are	called	strings.	We	call	them
strings	because	they're	just	that	-	strings	of	characters.	A	string	is	one	of	the	most
basic	building	blocks	of	any	programming	language,	and	we'll	use	strings	a	lot
over	the	next	few	chapters.

We	also	didn't	type	our	code	like	this:

Phrase	=	"Hello,	world"

print(phrase)

Real	Python	Part	1:	Introduction	to	Python

21Store	a	Variable

Can	you	spot	the	difference?	In	this	example,	the	first	line	defines	the	variable	Phrase
with	a	capital	"P"	at	the	beginning,	but	the	second	line	prints	out	the	variable		phrase	.

WARNING:	Since	Python	is	case-sensitive,	the	variables		Phrase		and		phrase	
are	entirely	different	things.	Likewise,	commands	start	with	lowercase	letters;	we
can	tell	Python	to	print,	but	it	wouldn't	know	how	to	Print.	Keep	this	important
distinction	in	mind!

When	you	run	into	trouble	with	the	sample	code,	be	sure	to	double-check	that	every
character	in	your	code	(often	including	spaces)	exactly	matches	the	examples.
Computers	don't	have	any	common	sense	to	interpret	what	you	meant	to	say,	so	being
almost	correct	still	won't	get	a	computer	to	do	the	right	thing!

Review	exercises:

1.	 Using	the	interactive	window,	display	some	text	on	the	screen	by	using	print
2.	 Using	the	interactive	window,	display	a	string	of	text	by	saving	the	string	to	a

variable,	then	printing	the	contents	of	that	variable
3.	 Do	each	of	the	first	two	exercises	again	by	first	saving	your	code	in	a	script	and	then

running	the	script

Real	Python	Part	1:	Introduction	to	Python

22Store	a	Variable

Interlude:	Leave	yourself	helpful	notes
As	you	start	to	write	more	complicated	scripts,	you'll	start	to	find	yourself	going	back	to
parts	of	your	code	after	you've	written	them	and	thinking,	"What	the	heck	was	that
supposed	to	do"?

To	avoid	these	moments,	you	can	leave	yourself	notes	in	your	code;	they	don't	affect	the
way	the	script	runs	at	all,	but	they	help	to	document	what's	supposed	to	be	happening.
These	notes	are	referred	to	as	comments,	and	in	Python	you	start	a	comment	with	a
pound	(#)	sign.	Our	first	script	could	have	looked	like	this:

#	This	is	my	first	script

phrase	=	"Hello,	world."

print(phrase)		#	this	line	displays	"Hello,	world"

The	first	line	doesn't	do	anything,	because	it	starts	with	a		#	.	This	tells	Python	to	ignore
the	line	completely	because	it's	just	a	note	for	you.

Likewise,	Python	ignores	the	comment	on	the	last	line;	it	will	still	print	phrase,	but
everything	starting	with	the		#		is	simply	a	comment.

Of	course,	you	can	still	use	a	#	symbol	inside	of	a	string.	For	instance,	Python	won't
mistake	the	following	for	the	start	of	a	comment:

print("#1")

If	you	have	a	lot	to	say,	you	can	also	create	comments	that	span	over	multiple	lines	by
using	a	series	of	three	single	quotes	(''')	or	three	double	quotes	(""")	without	any
spaces	between	them.	Once	you	do	that,	everything	after	the		'''		or		"""		becomes	a
comment	until	you	close	the	comment	with	a	matching		'''		or		"""	.	For	instance,	if	you
were	feeling	excessively	verbose,	our	first	script	could	have	looked	like	this:

Real	Python	Part	1:	Introduction	to	Python

23Interlude:	Leave	yourself	helpful	notes

"""

This	is	my	first	script.

It	prints	the	phrase	"Hello,	world."

The	comments	are	longer	than	the	script

"""

phrase	=	"Hello,	world."

print(phrase)

"""

The	line	above	displays	"Hello,	world"

"""

The	first	three	lines	are	now	all	one	comment,	since	they	fall	between	pairs	of		"""	.	You
can't	add	a	multi-line	comment	at	the	end	of	a	line	of	code	like	with	the	#	version,	which
is	why	the	last	comment	is	on	its	own	separate	line.	(We'll	see	why	in	the	next	chapter.)

Besides	leaving	yourself	notes,	another	common	use	of	comments	is	to	"comment	out
code"	while	you're	testing	parts	of	a	scripts	to	temporarily	stop	that	part	of	the	code	from
running.	In	other	words,	adding	a		#		at	the	beginning	of	a	line	of	code	is	an	easy	way	to
make	sure	that	you	don't	actually	use	that	line,	even	though	you	might	want	to	keep	it
and	use	it	later.

Real	Python	Part	1:	Introduction	to	Python

24Interlude:	Leave	yourself	helpful	notes

Fundamentals:	Strings	and	Methods
As	we've	already	seen,	you	write	strings	in	Python	by	surrounding	them	with	quotes.	You
can	use	single	quotes	or	double	quotes,	as	long	as	you're	consistent	for	any	one	string.
All	of	the	following	lines	create	string	variables	(called	string	literals	because	we've
literally	written	out	exactly	how	they	look):

1.	 	phrase	=	'Hello,	world.'	
2.	 	my_string	=	"We're	#1!"	
3.	 	string_number	=	"1234"	
4.	 	conversation	=	'I	said,	"Put	it	over	by	the	llama."'	

Strings	can	include	any	characters	-	letters,	numbers	and	symbols.	You	can	see	the
benefit	of	using	either	single	or	double	quotes	in	the	last	string	example;	since	we	used
single	quotes,	we	didn't	have	any	trouble	putting	double	quotes	inside	the	string.	(There
are	other	ways	to	do	this,	but	we'll	get	to	those	later	in	the	chapter.)

We	can	also	create	really	long	strings	that	take	up	multiple	lines	by	using	three	single
quotes	(or	three	double	quotes),	like	this:

long_string	=	'''This	is	a

string	that	spans	across	multiple	lines'''

long_string	=	"""This	is	a	new	string

that	spans	across	two	lines"""

Here	we	assigned	one	value	to	the	variable		long_string	,	then	we	overwrote	that	value
with	a	new	string	literal.	Try	putting	this	in	a	script	and	then	print	the	variable
	long_string	;	you'll	see	that	it	displays	the	string	on	two	separate	lines.	You	can	also
see	now	why	you	can't	have	multi-line	comments	appear	on	the	same	line	as	actual
code;	Python	wouldn't	be	able	to	tell	the	difference	between	these	and	actual	string
variables!

It's	also	worth	noting	that	you	can	preserve	whitespace	if	you	use	triple	quotes:

print("""this	is	a

				string	that	spans	across	multiple	lines

								that	also	preserves	whitepace.""")

Real	Python	Part	1:	Introduction	to	Python

25Fundamentals:	Strings	and	Methods

One	last	thing	about	strings:	If	you	want	to	write	out	a	really	long	string,	but	you	don't
want	it	to	appear	on	multiple	lines,	you	can	use	a	backslash	like	this	when	writing	it	out:

my_long_string	=	"Here's	a	string	that	I	want	to	\

write	across	multiple	lines	since	it	is	long."

Normally	Python	would	get	to	the	end	of	the	first	line	and	get	angry	with	you	because
you	hadn't	closed	the	string	with	a	matching	single	quote.	But	because	there's	a
backslash	at	the	end,	you	can	just	keep	writing	the	same	string	on	the	next	line.	This	is
different	from	the	last	example	since	the	actual	string	isn't	stored	on	multiple	lines	this
time,	therefore	the	string	gets	displayed	on	a	single	line	without	the	break:

>>>	print(my_long_string)

Here's	a	string	that	I	want	to	write	across	multiple	lines	since	it	is	long.

>>>

WARNING:	As	we've	already	discussed,	Python	is	case-sensitive.	By	convention,
Python's	built-in	functions	and	methods	use	exclusively	lower-case.	Since	a	single
variable	name	can't	include	any	spaces	or	dashes,	when	programmers	want	to
give	descriptive	names	to	variables,	one	way	of	making	them	easily	readable	is	to
use	camelCase	(i.e.,	myLongString),	so	called	because	of	the	upper-case
"humps"	in	the	middle	of	terms.	Another	popular	method	(especially	in	Python),
and	the	one	we'll	be	sticking	to	in	this	course,	is	to	separate	words	using
underscores	(i.e.,	my_long_string).

Review	exercises:

1.	 Print	a	string	that	uses	double	quotation	marks	inside	the	string
2.	 Print	a	string	that	uses	an	apostrophe	(single	quote)	inside	the	string
3.	 Print	a	string	that	spans	across	multiple	lines
4.	 Print	a	one-line	string	that	you	have	written	out	on	multiple	lines

Real	Python	Part	1:	Introduction	to	Python

26Fundamentals:	Strings	and	Methods

Mess	Around	with	Your	Words
Python	has	some	built-in	functionality	that	we	can	use	to	modify	our	strings	or	get	more
information	about	them.	For	instance,	there's	a	"length"	function	(abbreviated	as	"len"	in
Python)	that	can	tell	you	the	length	of	all	sorts	of	things,	including	strings.	Try	typing
these	lines	into	the	interactive	window:

>>>	my_string	=	"abc"

>>>	string_length	=	len(my_string)

>>>	print(string_length)

3

>>>

First	we	created	a	string	named		my_string	.	Then	we	used	the		len()		function	on
	my_string		to	calculate	its	length,	which	we	store	in	the	new	variable	we	named
	string_length	.	We	have	to	give	the		len()		function	some	input	for	its	calculation,
which	we	do	by	placing		my_string		after	it	in	the	parentheses	-	you'll	see	more	on
exactly	how	this	works	later.	The	length	of	'abc'	is	just	the	total	number	of	characters	in
it,	3,	which	we	then	print	to	the	screen.

We	can	combine	strings	together	as	well:

>>>	string1	=	"abra"

>>>	string2	=	"cadabra"

>>>	magic_string	=	string1	+	string2

>>>	print(magic_string)

abracadabra

>>>

Or	even	like	this,	without	creating	any	new	variables:

>>>	print("abra"+"ca"+"dabra")

abracadabra

>>>

In	programming,	when	we	add	(or	smoosh)	strings	together	like	this,	we	say	that	we
concatenate	them.

Real	Python	Part	1:	Introduction	to	Python

27Mess	Around	with	Your	Words

NOTE:	You'll	see	a	lot	of	bold	terms	throughout	the	first	few	chapters	of	this	book.
Don't	worry	about	memorizing	all	of	them	if	they're	unfamiliar!	You	don't	need	any
fancy	jargon	to	program	well,	but	it's	good	to	be	aware	of	the	correct	terminology.
Programmers	tend	to	throw	around	technical	terms	a	lot;	not	only	does	it	allow	for
more	precise	communication,	but	it	helps	make	simple	concepts	sound	more
impressive.

When	we	want	to	combine	many	strings	at	once,	we	can	also	use	commas	to	separate
them.	This	will	automatically	add	spaces	between	the	strings,	like	so:

>>>	print("abra",	"ca",	"dabra")

abra	ca	dabra

>>>

Of	course,	the	commas	have	to	go	outside	of	the	quotation	marks,	since	otherwise	the
commas	would	become	part	of	the	actual	strings	themselves.

Since	a	string	is	just	a	sequence	of	characters,	we	should	be	able	to	access	each
character	individually	as	well.	We	can	do	this	by	using	square	brackets	after	the	string,
like	this:

>>>	flavor	=	"birthday	cake"

>>>	print(flavor[3])

t

>>>

Wait,	but	"t"	is	the	fourth	character!	Well,	not	in	the	programming	world.	In	Python	(and
most	other	programming	languages),	we	start	counting	at	0.	So	in	this	case,	"b"	is	the
"zeroth"	character	of	the	string	"birthday	cake".	This	makes	"i"	the	first	character,	"r"	the
second,	and	"t"	the	third.

If	we	wanted	to	display	what	we	would	normally	tend	to	think	of	as	the	"first"	character,
we	would	actually	need	to	print	the	0th	character:

>>>	print(flavor[0])

b

>>>

Be	careful	when	you're	using:

parentheses:		()	
square	brackets:		[]	

Real	Python	Part	1:	Introduction	to	Python

28Mess	Around	with	Your	Words

curly	braces:		{	}	

These	all	mean	different	things	to	Python,	so	you	can	never	switch	one	for	another.	We'll
see	more	examples	of	when	each	one	is	used	(and	we	haven't	seen		{}		yet),	but	keep
in	mind	that	they're	all	used	differently.

The	number	that	we	assigned	to	each	character's	position	is	called	the	index	or	subscript
number,	and	Python	thinks	of	the	string	like	this:

Character: b i r t h d a y

Index	/	Subscript	#: 0 1 2 3 4 5 6 7

We	can	get	a	particular	section	out	of	the	string	as	well,	by	using	square	brackets	and
specifying	the	range	of	characters	that	we	want.	We	do	this	by	putting	a	colon	between
the	two	subscript	numbers,	like	so:

>>>	flavor	=	"birthday	cake"

>>>	print(flavor[0:3])

bir

>>>

Here	we	told	Python	to	show	us	only	the	first	three	characters	of	our	string,	starting	at
the	0th	character	and	going	up	until	(but	not	including)	the	3rd	character.	The	number
before	the	colon	tells	Python	the	first	character	we	want	to	include,	while	the	number
after	the	colon	says	that	we	want	to	stop	just	before	that	character.

If	we	use	the	colon	in	the	brackets	but	omit	one	of	the	numbers	in	a	range,	Python	will
assume	that	we	meant	to	go	all	the	way	to	the	end	of	the	string	in	that	direction:

>>>	flavor	=	"birthday	cake"

>>>	print(flavor[:5])

birth

>>>	print(flavor[5:])

day	cake

>>>	print(flavor[:])

birthday	cake

>>>

The	way	we're	using	brackets	after	the	string	is	referred	to	as	subscripting	or	indexing
since	it	uses	the	index	numbers	of	the	string's	characters.

Real	Python	Part	1:	Introduction	to	Python

29Mess	Around	with	Your	Words

NOTE:	Python	strings	are	immutable,	meaning	that	they	can't	be	changed	once
you've	created	them.	For	instance,	see	what	happens	when	you	try	to	assign	a
new	letter	to	one	particular	character	of	a	string:

	my_string	=	"goal"	

	my_string[0]	=	"f"	#	this	won't	work!	

Instead,	we	would	have	to	create	an	entirely	new	string	(although	we	can	still	give
	my_string		that	new	value):

	my_string	=	"goal"	

	my_string	=	"f"	+	my_string[1:]	

In	the	first	example,	we	were	trying	to	change	part	of		my_string		and	keep	the
rest	of	it	unchanged,	which	doesn't	work.	In	the	second	example,	we	created	a
new	string	by	adding	two	strings	together,	one	of	which	was	a	part	of		my_string	;
then	we	took	that	new	string	and	completely	reassigned		my_string		to	this	new
value.

Review	exercises:

1.	 Create	a	string	and	print	its	length	using	the		len()		function
2.	 Create	two	strings,	concatenate	them	(add	them	next	to	each	other)	and	print	the

combination	of	the	two	strings
3.	 Create	two	string	variables,	then	print	one	of	them	after	the	other	(with	a	space

added	in	between)	using	a	comma	in	your	print	statement
4.	 print	the	string	"zing"	by	using	subscripting	and	index	numbers	on	the	string

"bazinga"	to	specify	the	correct	range	of	characters

Real	Python	Part	1:	Introduction	to	Python

30Mess	Around	with	Your	Words

Use	Objects	and	Methods
The	Python	programming	language	is	an	example	of	Object-Oriented	Programming
(OOP),	which	means	that	we	store	our	information	in	objects.	In	Python,	a	string	is	an
example	of	an	object.	Strings	are	very	simple	objects	-	they	only	hold	one	piece	of
information	(their	value)	-	but	a	single	object	can	be	very	complex.	Objects	can	even
hold	other	objects	inside	of	them.	This	helps	to	give	structure	and	organization	to	our
programming.

For	instance,	if	we	wanted	to	model	a	car,	we	would	(hypothetically)	create	a	Car	object
that	holds	lots	of	descriptive	information	about	the	car,	called	its	attributes.	It	would	have
a	color	attribute,	a	model	attribute,	etc.,	and	each	of	these	attributes	would	hold	one
piece	of	descriptive	information	about	the	car.	It	would	also	include	different	objects	like
Tires,	Doors,	and	an	Engine	that	all	have	their	own	attributes	as	well.

Different	objects	also	have	different	capabilities,	called	methods.	For	instance,	our	Car
object	might	have	a		drive()		method	and	a		park()		method.	Since	these	methods
belong	to	the	car,	we	use	them	with	"dot	notation"	by	putting	them	next	to	the	object	and
after	a	period,	like	this:

	car.park()	

Methods	are	followed	by	parentheses,	because	sometimes	methods	use	input.	For
instance,	if	we	wanted	to	drive	the	car	object	a	distance	of	50,	we	would	place	that	input
of	50	in	the	parentheses	of	the	"drive"	method:

	car.drive(50)	

There	are	certain	methods	that	belong	to	string	objects	as	well.	For	instance,	there	is	a
string	method	called		upper()		that	creates	an	upper-case	version	of	the	string.
(Likewise,	there	is	a	corresponding	method		lower()		that	creates	a	lower-case	version
of	a	string.)	Let's	give	it	a	try	in	the	interactive	window:

>>>	loud_voice	=	"Can	you	hear	me	yet?"

>>>	print(loud_voice.upper())

CAN	YOU	HEAR	ME	YET?

>>>

Real	Python	Part	1:	Introduction	to	Python

31Use	Objects	and	Methods

We	created	a	string		loud_voice	,	then	we	called	its		upper()		method	to	return	the
upper-case	version	of	the	string,	which	we	print	to	the	screen.

NOTE:	Methods	are	just	functions	that	belong	to	objects.	We	already	saw	an
example	of	a	general-purpose	function,	the		len()		function,	which	can	be	used	to
tell	us	the	length	of	many	different	types	of	objects,	including	strings.	This	is	why
we	use	the	length	function	differently,	by	only	saying:		len(loud_voice)	

Meanwhile,	we	use	dot	notation	to	call	methods	that	belong	to	an	object,	like	when
we	call	the		upper()		method	that	belongs	to	the	string		loud_voice	:
	loud_voice.upper()	

Let's	make	things	more	interactive	by	introducing	one	more	general	function.	We're
going	to	get	some	input	from	the	user	of	our	program	by	using	the	function		input()	.
The	input	that	we	pass	to	this	function	is	the	text	that	we	want	it	to	display	as	a	prompt;
what	the	function	actually	does	is	to	receive	additional	input	from	the	user.	Try	running
the	following	script:

user_input	=	input("Hey,	what's	up?	")

print("You	said:	",	user_input)

When	you	run	this,	instead	of	the	program	ending	and	taking	you	back	to	the		>>>	
prompt,	you'll	just	see:

>>>

Hey,	what's	up?

...with	a	blinking	cursor.	It's	waiting	for	you	to	answer!	Enter	a	response,	and	it	will	store
that	answer	in	the		user_input		string	and	display	it	back:

>>>

Hey,	what's	up?	Mind	your	own	business.

You	said:	Mind	your	own	business.

>>>

Now	we'll	combine	the	function		input()		with	the	string	method		upper()		in	a	script	to
modify	the	user's	input:

Real	Python	Part	1:	Introduction	to	Python

32Use	Objects	and	Methods

response	=	input("What	should	I	shout?	")

response	=	response.upper()

print("Well,	if	you	insist...",	response)

Calling		response.upper()		didn't	change	anything	about	our	response	string.	The
	upper()		method	only	returned	the	upper-case	version	of	the	string	to	us,	and	it	was	up
to	us	to	do	something	with	it.	That's	why	we	had	to	set		response	=	response.upper()		in
order	to	reassign	the	value	of	the	string	response	to	its	own	upper-case	equivalent.

In	IDLE,	if	you	want	to	see	all	the	methods	can	apply	to	a	particular	kind	of	object,	you
can	type	that	object	out	followed	by	a	period	and	then	hit	CTRL+SPACE.	For	instance,
first	define	a	string	object	in	the	interactive	window:

>>>	my_string	=	"kerfuffle"

Now	type	the	name	of	your	string	in	again,	followed	by	a	period	(without	hitting	enter):

>>>	my_string.

When	you	hit	CTRL+SPACE,	you'll	see	a	list	of	method	options	that	you	can	scroll
through	with	the	arrow	keys.	Strings	have	lots	of	methods!

A	related	shortcut	in	IDLE	is	the	ability	to	fill	in	text	automatically	without	having	to	type
in	long	names	by	hitting	TAB.	For	instance,	if	you	only	type	in	"my_string.u"	and	then	hit
the	TAB	key,	IDLE	will	automatically	fill	in	"my_string.upper"	because	there	is	only	one
method	belonging	to	my_string	that	begins	with	a	"u".	In	fact,	this	even	works	with
variable	names;	try	typing	in	just	the	first	few	letters	of	"my_string"	and,	assuming	you
don't	have	any	other	names	already	defined	that	share	those	first	letters,	IDLE	will
automatically	complete	the	name	"my_string"	for	you	when	you	hit	the	TAB	key.

For	more	on	objects	and	classes,	check	out	the	Primer	on	Object-Oriented
Programming	in	Python	chapter.

Review	exercises:

1.	 Write	a	script	that	takes	input	from	the	user	and	displays	that	input	back
2.	 Use	CTRL+SPACE	to	view	all	the	methods	of	a	string	object,	then	write	a	script	that

returns	the	lower-case	version	of	a	string

Real	Python	Part	1:	Introduction	to	Python

33Use	Objects	and	Methods

Real	Python	Part	1:	Introduction	to	Python

34Use	Objects	and	Methods

Assignment:	Pick	apart	your	user's	input
Write	a	script	named	first_letter.py	that	first	prompts	the	user	for	input	by	using	the
string:		Tell	me	your	password:	

The	script	should	then	determine	the	first	letter	of	the	user's	input,	convert	that	letter	to
upper-case,	and	display	it	back.	As	an	example,	if	the	user	input	was	"no"	then	the
program	should	respond	like	this:	The	first	letter	you	entered	was:	N

For	now,	it's	okay	if	your	program	crashes	when	the	user	enters	nothing	as	input	(just
hitting	ENTER	instead).	We'll	find	out	a	couple	ways	you	could	deal	with	this	situation	in
an	upcoming	chapter.

Real	Python	Part	1:	Introduction	to	Python

35Assignment:	pick	apart	your	user's	input

Fundamentals:	Working	with	Strings
We've	seen	that	string	objects	can	hold	any	characters,	including	numbers.	However,
don't	confuse	string	"numbers"	with	actual	numbers.	For	instance,	try	this	bit	of	code	out
in	the	interactive	window:

>>>	my_number	=	"2"

>>>	print(my_number	+	my_number)

22

>>>

We	can	add	strings	together,	but	we're	just	concatenating	them	-	we're	not	actually
adding	the	two	quantities	together.	Python	will	even	let	us	"multiply"	strings	as	well:

>>>	my_number	=	"12"

>>>	print(my_number	*	3)

121212

>>>

If	we	want	to	change	a	string	object	into	a	number,	there	are	two	general	functions	we
commonly	use:		int()		and		float()	.

	int()		stands	for	"integer"	and	converts	objects	into	whole	numbers,	while		float()	
stands	for	"floating-point	number"	and	converts	objects	into	numbers	that	have	decimal
points.	For	instance,	we	could	change	the	string	my_number	into	an	integer	or	a	"float"
like	so:

>>>	my_number	=	"12"

>>>	print(int(my_number))

12

>>>	print(float(my_number))

12.0

>>>

Notice	how	the	second	version	added	a	decimal	point,	because	the	floating-point
number	has	more	precision	(more	decimal	places).	For	this	reason,	we	couldn't	change
a	string	that	looks	like	a	floating-point	number	into	an	integer	because	we	would	have	to
lose	everything	after	the	decimal:

Real	Python	Part	1:	Introduction	to	Python

36Fundamentals:	Working	with	Strings

>>>	my_number	=	"12.0"

>>>	print(int(my_number))

Traceback	(most	recent	call	last):

		File	"<pyshell#1>",	line	1,	in	<module>

				print(int(my_number))

ValueError:	invalid	literal	for	int()	with	base	10:	'12.0'

>>>

Even	though	the	extra	0	after	the	decimal	place	doesn't	actually	add	any	value	to	our
number,	Python	is	telling	us	that	we	can't	just	change	12.0	into	12	-	because	we	might
lose	part	of	the	number.

If	you	want	to	turn	a	number	into	a	string,	of	course	there's	a	function	for	that,	too	-	the
	str()		function.	One	place	where	this	becomes	important	is	when	we	want	to	add	string
and	numbers	together.	For	instance,	we	can't	just	concatenate	the	two	different	types	of
objects	like	this:

>>>	print("1"	+	1)

Traceback	(most	recent	call	last):

		File	"<pyshell#1>",	line	1,	in	<module>

				print("1"	+	1)

TypeError:	cannot	concatenate	'str'	and	'int'	objects

>>>

Python	doesn't	know	how	to	add	different	types	of	objects	together	-	we	could	have
meant	the	answer	to	be	"2"	or	"11"	depending	on	whether	we	had	strings	or	integers.	If
we	wanted	to	put	the	two	numbers	side-by-side	as	one	string,	we	would	have	to	convert
the	integer	into	a	string:

>>>	print("1"	+	str(1))

11

>>>

"Integer"	and	"string"	are	called	types	of	objects.	Always	keep	in	mind	that	you	might	get
unexpected	results	if	you	mix	types	incorrectly	or	if	you	use	one	type	of	object	when	you
really	meant	to	use	another.

Review	exercises:

1.	 Create	a	string	object	that	stores	an	integer	as	its	value,	then	convert	that	string	into
an	actual	integer	object	using		int()	;	test	that	your	new	object	is	really	a	number

Real	Python	Part	1:	Introduction	to	Python

37Fundamentals:	Working	with	Strings

by	multiplying	it	by	another	number	and	displaying	the	result
2.	 Repeat	the	previous	exercise,	but	use	a	floating-point	number	and		float()	
3.	 Create	a	string	object	and	an	integer	object,	then	display	them	side-by-side	with	a

single	print	statement	by	using	the		str()		function

Real	Python	Part	1:	Introduction	to	Python

38Fundamentals:	Working	with	Strings

Streamline	Your	Print	Statements
Suppose	we	have	a	string	object,		name	=	"Zaphod"	,	and	two	integer	objects,		num_heads
=	2		and		num_arms	=	3	.	We	want	to	display	them	in	the	following	line:		Zaphod	has	2
heads	and	3	arms	.	This	is	called	string	interpolation,	which	is	just	a	fancy	way	of	saying
that	you	want	to	insert	some	'stuff'	-	i.e.,	variables	-	into	a	string.

We've	already	seen	two	ways	of	doing	this.	The	first	would	involve	using	commas	to
insert	spaces	between	each	piece	of	our	statement:

print(name,	"has",	str(num_heads),	"heads	and",	str(num_arms),	"arms")

Another	way	we	could	do	this	is	by	concatenating	the	strings	with	the	+	operator:

print(name+"	has	"+str(num_heads)+"	heads	and	"+str(num_arms)+"	arms")

I	didn't	use	spaces	around	all	the	+	signs	just	so	that	the	two	expressions	would	line	up,
but	it's	pretty	difficult	to	read	either	way.	Trying	to	keep	track	of	what	goes	inside	or
outside	of	the	quotes	can	be	a	huge	pain,	which	is	why	there's	a	third	way	of	combining
strings	together:	using	the	string		format()		method.

The	simplest	version	of	the		format()		method	would	look	like	this	for	our	example:

print("{}	has	{}	heads	and	{}	arms".format(name,	num_heads,	num_arms))

The	pairs	of	empty	curly	braces	({}		without	any	space	in	between	the	two)	serve	as
place-holders	for	the	variables	that	we	want	to	place	inside	the	string.	We	then	pass
these	variables	into	our	string	as	inputs	of	the	string's		format()		method,	in	order.	The
really	great	part	about	this	technique	is	that	we	didn't	even	have	to	change	our	integers
into	string	types	first	-	the		format()		method	did	that	for	us	automatically.

Although	it's	less	frequently	used,	we	can	also	use	index	numbers	inside	the	curly
braces	to	do	the	same	thing:

print("{0}	has	{1}	heads	and	{2}	arms".format(name,	num_heads,	num_arms))

Real	Python	Part	1:	Introduction	to	Python

39Streamline	Your	Print	Statements

Here	we've	inserted	name	into	the	{0}	place-holder	because	it	is	the	0th	input	listed,	and
so	on.	Since	we	numbered	our	place-holders,	we	don't	even	have	to	provide	the	inputs
in	the	same	order.	For	instance,	this	line	would	also	do	the	exact	same	thing:

print("{2}	has	{1}	heads	and	{0}	arms".format(num_arms,	num_heads,	name))

This	style	of	formatting	can	be	helpful	if	you	want	to	repeat	an	input	multiple	times	within
a	string,	i.e.:

>>>	print("{0}	has	{0}	heads	and	{0}	arms".format(name))

Zaphod	has	Zaphod	heads	and	Zaphod	arms.

>>>

Finally,	if	we	didn't	want	to	create	three	separate	objects	ahead	of	time,	one	last	way	of
using		format()		would	be	to	name	and	assign	new	objects	inside	the		format()		method,
like	so:

print("{name}	has	{num_heads}	heads	and	{num_arms}	arms".format(

				name="Zaphod",	num_heads=2,	num_arms=3

))

These	input	variables	don't	necessarily	have	to	be	listed	in	the	same	order	since	we've
called	on	each	of	them	by	name	inside	the	string.

NOTE:	There	is	also	another	way	to	print	formatted	strings:	using	the	%	operator.
You	might	see	this	in	code	that	you	find	elsewhere,	and	you	can	read	about	how	it
works	here	if	you're	curious,	but	just	be	aware	that	this	style	has	been	phased	out
completely	in	Python	3	(and	the	"new"		format()		style	also	works	in	Python	2.7),
so	there's	no	need	to	use	this	method	in	your	code.	Just	be	aware	of	it	in	case	you
come	across	it	in	legacy	code	bases.

Review	exercises:

1.	 Create	a	"float"	object	(a	decimal	number)	named	weight	that	holds	the	value	0.2,
and	create	a	string	object	named		animal		that	holds	the	value	"newt",	then	use
these	objects	to	print	the	following	line	without	using	the		format()		string	method:
0.2	kg	is	the	weight	of	the	newt.

2.	 Display	the	same	line	using		format()		and	empty		{}		place-holders
3.	 Display	the	same	line	using		{}		place-holders	that	use	the	index	numbers	of	the

Real	Python	Part	1:	Introduction	to	Python

40Streamline	Your	Print	Statements

https://docs.python.org/3.5/library/stdtypes.html#string-formatting

inputs	provided	to	the		format()		method
4.	 Display	the	same	line	by	creating	new	string	and	float	objects	inside	of	the

	format()		method

Real	Python	Part	1:	Introduction	to	Python

41Streamline	Your	Print	Statements

Find	a	String	in	a	String
One	of	the	most	useful	string	methods	is		find()	.	As	its	name	implies,	we	can	use	this
method	to	find	the	location	of	one	string	in	another	string.	We	use	dot	notation	because
this	method	belongs	to	a	string,	and	the	input	we	supply	in	parentheses	is	the	string
we're	searching	for:

>>>	phrase	=	"the	surprise	is	in	here	somewhere"

>>>	print(phrase.find("surprise"))

4

>>>

We're	searching	for	the	location	of	the	string	"surprise"	in	our	phrase	string.	The	value
that		find()		returns	is	the	index	of	the	first	occurrence	of	that	string.	In	this	case,
"surprise"	starts	at	the	4th	character	into	the	phrase	(remember	to	start	counting	at	0),	so
we	displayed	4.

If		find()		doesn't	find	the	string	we're	looking	for,	it	will	return	-1	instead:

>>>	phrase	=	"the	surprise	is	in	here	somewhere"

>>>	print(phrase.find("ejafjallajökull"))

-1

>>>

We	can	even	call	string	methods	on	a	string	literal	directly,	so	in	this	case	we	didn't	even
need	to	create	a	new	string	object:

>>>	print("the	surprise	is	in	here	somewhere".find("surprise"))

4

>>>

Keep	in	mind	that	this	matching	is	done	exactly,	character	by	character.	If	we	had	tried
to	find	"SURPRISE",	we	would	have	gotten	a	-1.

The	part	of	the	string	we	are	searching	for	(or	any	part	of	a	string)	is	called	a	substring.

If	a	substring	appears	more	than	once	in	our	string,		find()		will	just	return	the	first
appearance,	starting	from	the	beginning	of	the	string.	For	instance,	try	out:

Real	Python	Part	1:	Introduction	to	Python

42Find	a	String	in	a	String

>>>	"I	put	a	string	in	your	string".find("string")

8

>>>

Keep	in	mind	that	we	still	can't	mix	object	types;		find()		will	only	accept	a	string	as	its
input.	If	we	were	looking	for	an	integer	inside	in	a	string,	we	would	still	have	to	put	that
integer	value	in	a	string	of	its	own:

>>>	"My	number	is	555-555-5555".find("5")

13

>>>

A	similar	string	method	is		replace()	,	which	will	replace	all	occurrences	of	one	substring
with	a	different	string.	For	instance,	let's	replace	every	instance	of	"the	truth"	with	the
string	"lies"	in	the	following:

>>>	my_story	=	"I'm	telling	you	the	truth;	he	spoke	nothing	but	the	truth!"

>>>	print(my_story.replace("the	truth",	"lies"))

I'm	telling	you	lies;	he	spoke	nothing	but	lies!

>>>

Keep	in	mind	that	calling		replace()		did	not	actually	change	my_story;	in	order	to	affect
this	string,	we	would	still	have	to	reassign	it	to	a	new	value,	as	in:

>>>	my_story	=	my_story.replace("the	truth",	"lies")

>>>

Review	exercises:

1.	 In	one	line,	display	the	result	of	trying	to		find()		the	substring	"a"	in	the	string
"AAA";	the	result	should	be	-1

2.	 Create	a	string	object	that	contains	the	value	"version	2.0";		find()		the	first
occurrence	of	the	number	2.0	inside	of	this	string	by	first	creating	a	"float"	object	that
stores	the	value	2.0	as	a	floating-point	number,	then	converting	that	object	to	a
string	using	the		str()		function

3.	 Write	and	test	a	script	that	accepts	user	input	using		input()	,	then	displays	the
result	of	trying	to		find()		a	particular	letter	in	that	input

Real	Python	Part	1:	Introduction	to	Python

43Find	a	String	in	a	String

Real	Python	Part	1:	Introduction	to	Python

44Find	a	String	in	a	String

Assignment:	Turn	your	user	into	a	l33t	h4x0r
Write	a	script	translate.py	that	asks	the	user	for	some	input	with	the	following	prompt:
	Enter	some	text:	

You	should	then	use	the		replace()		method	to	convert	the	text	entered	by	the	user	into
"leetspeak"	by	making	the	following	changes	to	lower-case	letters:

The	letter:	a	becomes:	4
The	letter:	b	becomes:	8
The	letter:	e	becomes:	3
The	letter:	l	becomes:	1
The	letter:	o	becomes:	0
The	letter:	s	becomes:	5
The	letter:	t	becomes:	7

Your	program	should	then	display	the	resulting	output.	A	sample	run	of	the	program,
with	the	user	input	in	bold,	is	shown	below:

>>>	Enter	some	text:	I	like	to	eat	eggs	and	spam.

I	1ik3	70	347	3gg5	4nd	5p4m.

>>>

Real	Python	Part	1:	Introduction	to	Python

45Assignment:	Turn	your	user	into	a	l33t	h4x0r

http://en.wikipedia.org/wiki/Leet

Fundamentals:	Functions	and	Loops
We	already	did	some	basic	math	using	IDLE's	interactive	window.	For	instance,	we	saw
that	we	could	evaluate	simple	expressions	just	by	typing	them	in	at	the	prompt,	which
would	display	the	answer:

>>>	6	*	(1	+	6)

42

>>>

However,	just	putting	that	line	into	a	script-

6	*	(1	+	6)

-would	be	useless	since	we	haven't	actually	told	the	program	to	do	anything.	If	we	want
to	display	the	result	from	a	program,	we	have	to	rely	on	the	print	command	again.

Go	ahead	and	open	a	new	script,	save	it	as	arithmetic.py	and	try	displaying	the	results	of
some	basic	calculations:

print("1	+	1	=",	1	+	1)

print("2	*	(2	+	3)	=",	2	*	(2	+	3))

print("1.2	/	0.3	=",	1.2	/	0.3)

print("5	/	2	=",	5	/	2)

Here	we've	used	a	single	print	statement	on	each	line	to	combined	two	pieces	of
information	by	separating	the	values	with	a	comma.	The	results	of	the	numerical
expressions	on	the	right	will	automatically	be	calculated	when	we	display	it.

NOTE:	All	of	the	spaces	we	included	above	were	entirely	optional,	but	they	help	to
makes	things	easier	to	read.

When	you	save	and	run	this	script,	it	displays	the	results	of	your	print	commands	as
follows:

Real	Python	Part	1:	Introduction	to	Python

46Fundamentals:	Functions	and	Loops

>>>

1	+	1	=	2

2	*	(2	+	3)	=	10

1.2	/	0.3	=	4.0

5	/	2	=	2.5

>>>

Real	Python	Part	1:	Introduction	to	Python

47Fundamentals:	Functions	and	Loops

Assignment:	Perform	calculations	on	user
input
Write	a	script	called	exponent.py	that	receives	two	numbers	from	the	user	and	displays
the	result	of	taking	the	first	number	to	the	power	of	the	second	number.	A	sample	run	of
the	program	should	look	like	this	(with	example	input	that	has	been	provided	by	the	user
included	below):

>>>

Enter	a	base:	1.2

Enter	an	exponent:	3

1.2	to	the	power	of	3	=	1.728

>>>

Keep	the	following	in	mind:

1.	 In	Python,	x^y	(x	raised	to	the	power	y)	is	calculated	by	using	the	expression		x	**
y	

2.	 Before	you	can	do	anything	with	the	user's	input,	you	will	have	to	store	the	results	of
both	calls	to		input()		in	new	objects

3.	 The		input()		function	returns	a	string	object,	so	you	will	need	to	convert	the	user's
input	into	numbers	in	order	to	do	arithmetic	on	them

4.	 You	should	use	the	string		format()		method	to	print	the	result
5.	 You	can	assume	that	the	user	will	enter	actual	numbers	as	input

Real	Python	Part	1:	Introduction	to	Python

48Assignment:	Perform	calculations	on	user	input

Create	Your	Own	Functions
One	of	the	main	benefits	of	programming	in	Python	is	the	ease	with	which	different	parts
and	pieces	of	code	can	be	put	together	in	new	ways.	Think	of	it	like	building	with	Lego
bricks	instead	of	having	to	craft	everything	by	hand	each	time	you	start	a	project.

The	Lego	brick	of	programming	is	called	a	function.	A	function	is	basically	a	miniature
program;	it	accepts	input	and	produces	output.	We've	already	seen	some	examples	of
functions	such	as	the		find()		string	method	-	when	called	on	a	string,	it	takes	some
input	and	returns	the	location	of	that	input	within	the	string	as	its	output.

NOTE:	Functions	are	like	the	functions	from	a	math	class:	You	provide	the	input
and	the	function	produces	output.

We	could	create	our	own	function	that	takes	a	number	as	its	input	and	produces	the
square	of	that	number	as	its	output.	In	Python,	this	would	look	like:

def	square(number):

				sqr_num	=	number	**	2

				return	sqr_num

The		def		is	short	for	"define"	and	lets	Python	know	that	we	are	about	to	define	a	new
function.	In	this	case,	we	called	the	function	square	and	gave	it	one	input	variable	(the
part	in	parentheses)	named	number.	A	function's	input	(or,	the	value	passed	to	a
function)	is	called	an	argument	of	the	function,	and	a	function	can	take	more	than	one
argument.

The	first	line	within	our	function	multiplies	number	by	itself	and	stores	the	result	in	a	new
variable	named	sqr_num.	Then	the	last	line	of	our	function	returns	the	value	of	sqr_num,
which	is	the	output	of	our	function.

If	you	just	type	these	three	lines	into	a	script,	save	it	and	run	it,	nothing	will	happen.	The
function	doesn't	do	anything	by	itself.

However,	now	we	can	use	the	function	later	on	from	the	main	section	of	the	script.	For
instance,	try	running	this	script:

Real	Python	Part	1:	Introduction	to	Python

49Create	Your	Own	Functions

def	square(number):

				sqr_num	=	number	**	2

				return	sqr_num

input_num	=	5

output_num	=	square(input_num)

print(output_num)

By	saying		output_num	=	square(input_num)	,	we	are	calling	up	the	function	square	and
providing	this	function	with	the	input	variable		input_num	,	which	in	this	case	has	a	value
of	5.	Our	function	then	calculates	25	and	returns	the	value	of	the	variable		sqr_num	,
which	gets	stored	in	our	new	variable		output_num	.

NOTE:	Notice	the	colon	and	the	indentation	after	we	defined	our	function.	These
aren't	optional.	This	is	how	Python	knows	that	we	are	still	inside	of	the	function.	As
soon	as	Python	sees	a	line	that	isn't	indented,	that's	the	end	of	the	function.	Every
line	inside	the	function	must	be	indented.

You	can	define	many	functions	in	one	script,	and	functions	can	even	refer	to	each	other.
However,	it's	important	that	a	function	has	been	defined	before	you	try	to	use	it.	For
instance,	try	running	this	code	instead:

input_num	=	5

output_num	=	square(input_num)

print(output_num)

def	square(number):

				sqr_num	=	number	*	number

				return	sqr_num

Here	we've	just	reordered	the	two	parts	of	our	script	so	that	the	main	section	comes
before	the	function.	The	problem	here	is	that	Python	runs	through	our	code	from	the	top
to	the	bottom	-	so	when	we	call	the	square	function	on	the	second	line,	Python	has	no
idea	what	we	mean	yet	because	we	don't	actually	define	the	square	function	until	later
on	in	the	script,	and	it	hasn't	gotten	there	yet.	Instead	we	see	an	error:

NameError:	name	'square'	is	not	defined

Real	Python	Part	1:	Introduction	to	Python

50Create	Your	Own	Functions

To	create	a	function	that	uses	more	than	one	input,	all	we	need	to	do	is	separate	each
argument	of	the	function	with	a	comma.	For	instance,	the	following	function	takes	two
arguments	as	input	and	returns	the	difference,	subtracting	the	second	number	from	the
first:

def	return_difference(num1,	num2):

				return	num1	-	num2

To	call	this	function,	we	need	to	supply	it	with	two	inputs:

print(return_difference(3,	5))

This	line	will	call	our	new		return_difference()		function,	then	display	the	result	of	-2	that
the	function	returns.

NOTE:	Once	a	function	returns	a	value	with	the	return	command,	the	function	is
done	running;	if	any	code	appears	inside	the	function	after	the	return	statement,	it
will	never	be	run	because	the	function	has	already	returned	its	final	result.

One	last	helpful	thing	about	functions	is	that	Python	allows	you	to	add	special	comments
called	docstrings.	A	docstring	serves	as	documentation,	helping	to	explain	what	a
function	does	and	how	to	use	it.	They're	completely	optional,	but	can	be	helpful	if	there's
any	chance	that	you'll	either	share	your	code	with	someone	else	or	if	you	ever	come
back	to	your	code	later,	once	you've	forgotten	what	it's	supposed	to	do	-	which	is	why
you	should	leave	comments	in	the	first	place.	A	docstring	looks	just	like	a	multi-line
comment	with	three	quotation	marks,	but	it	has	to	come	at	the	very	beginning	of	a
function,	right	after	the	first	definition	line:

def	return_difference(n1,	n2):

				"""Return	the	difference	between	two	numbers.

							Subtracts	n2	from	n1."""

				return	n1	-	n2

The	benefit	of	this	(besides	leaving	a	helpful	comment	in	the	code)	is	that	we	can	now
use	the		help()		function	to	get	information	about	this	function.	Assuming	we	defined	this
function	by	typing	it	in	the	interactive	window	or	we	already	ran	a	script	where	it	was
defined,	we	can	now	type		help(return_difference)		and	see:

Real	Python	Part	1:	Introduction	to	Python

51Create	Your	Own	Functions

>>>	help(return_difference)

Help	on	function	return_difference	in	module	__main__:

return_difference(n1,	n2)

				Return	the	difference	between	two	numbers.

				Subtracts	n2	from	n1.

>>>

Of	course,	you	can	also	call		help()		on	the	many	other	Python	functions	we'll	see	to	get
a	quick	reference	on	how	they	are	used.

Real	Python	Part	1:	Introduction	to	Python

52Create	Your	Own	Functions

Functions	Summary
So,	what	do	we	know	about	functions?

1.	 Functions	require	a	function	signature.
2.	 They	do	something	useful.
3.	 They	allow	us	re-use	code	without	having	to	type	each	line	out.
4.	 They	can	take	an	input	and	usually	produce	some	output.
5.	 You	call	a	function	by	using	its	name	followed	by	empty	parenthesis	or	its

arguments	in	parenthesis.

Functions	require	a	function	signature.

Function	signatures	tell	the	user	how	the	function	should	be	called.	They	start	with	the
	def		keyword,	indicating	to	the	Python	interpreter	that	we're	defining	a	function.	Next
comes	a	space	along	with	the	the	name	of	the	function,	and	then	an	open	and	closed
parenthesis.	If	the	function	takes	any	inputs,	we	define	these	inside	the	parenthesis	and
separate	each	one	with	a	comma,	except	the	last.	We	call	these	parameters.

The	names	of	parameters	should	describe	what	they	are	used	for,	while	the	names	of
functions	should	be	descriptive	enough	for	the	user	to	understand	what	it	does.	Best
practice:	a	function	name	should	be	a	verb	or	an	action	and	arguments	names	should	be
nouns.

For	example:

def	add_two_numbers(num1,	num2):

They	do	something	useful.

Within	the	function	itself	something	useful	should	happen,	otherwise	you	have	to
question,	"Why	does	the	function	exist	in	the	first	place?"

In	our		add_two_numbers()		function,	we	could,	as	the	name	describes,	add	two	numbers:

def	add_two_numbers(num1,	num2):

				sum	=	num1	+	num2

Real	Python	Part	1:	Introduction	to	Python

53Functions	Summary

They	allow	us	re-use	code	without	having	to	type	each
line	out.

We	can	use	this	function	as	many	times	as	we	want,	passing	in	two	numbers,	which	will
then	get	combined.

They	take	an	input	and	usually	produce	some	output.

In	the	above	function,	we	pass	in	two	numbers	as	input	parameters,	but	we	don't	return
anything.	Therefore,	we	don't	get	any	output.	Let's	fix	that	by	returning	the	sum:

def	add_two_numbers(num1,	num2):

				sum	=	num1	+	num2

				return	sum

You	call	a	function	by	using	its	name	followed	by	its
arguments	in	parenthesis.

We	can	call	this	function	as	many	times	as	we'd	like,	providing	different	arguments	each
time	to	produce	new	output:

>>>	def	add_two_numbers(num1,	num2):

...					sum	=	num1	+	num2

...					return	sum

...

>>>	print(add_two_numbers(1,1))

2

>>>	print(add_two_numbers(1,2))

3

>>>	print(add_two_numbers(-20,9))

-11

>>>

Try	creating	your	own	functions	that	do	something	useful	following	these	steps.

Review	exercise:

1.	 Write	a		cube()		function	that	takes	a	number	and	multiplies	that	number	by	itself
twice	over,	returning	the	new	value;	test	the	function	by	displaying	the	result	of
calling	your		cube()		function	on	a	few	different	numbers

2.	 Write	a	function		multiply()		that	takes	two	numbers	as	inputs	and	multiplies	them

Real	Python	Part	1:	Introduction	to	Python

54Functions	Summary

together,	returning	the	result;	test	your	function	by	saving	the	result	of		multiply(2,
5)		in	a	new	variable	and	printing	it

Real	Python	Part	1:	Introduction	to	Python

55Functions	Summary

Assignment:	Convert	temperatures
Write	a	script	temperature.py	that	includes	two	functions.	One	function	takes	a	Celsius
temperature	as	its	input,	converts	that	number	into	the	equivalent	Fahrenheit
temperature	and	returns	that	value.	The	second	function	takes	a	Fahrenheit	temperature
and	returns	the	equivalent	Celsius	temperature.	Test	your	functions	by	passing	input
values	to	them	and	printing	the	output	results.

For	testing	your	functions,	example	output	should	look	like:

72	degrees	F	=	22.2222222222	degrees	C

37	degrees	C	=	98.6	degrees	F

In	case	you	didn't	want	to	spend	a	minute	searching	the	web	or	doing	algebra	(the
horror!),	the	relevant	conversion	formulas	are:

1.	 F	=	C	*	9/5	+	32
2.	 C	=	(F	-	32)	*	5/9

Real	Python	Part	1:	Introduction	to	Python

56Assignment:	Convert	temperatures

Run	in	circles
One	major	benefit	of	computers	is	that	we	can	make	them	do	the	same	exact	thing	over
and	over	again,	and	they	rarely	complain	or	get	tired.	The	easiest	way	to	program	your
computer	to	repeat	itself	is	with	a	loop.

There	are	two	kinds	of	loops	in	Python:	for	loops	and	while	loops.	The	basic	idea
behind	any	kind	of	loop	is	to	run	a	section	of	code	repeatedly	as	long	as	a	specific
statement	(called	the	test	condition)	is	true.	For	instance,	try	running	this	script	that	uses
a	while	loop:

n	=	1

while	(n	<	5):

				print("n	=",	n)

				n	=	n	+	1

print("Loop	finished")

Here	we	create	a	variable		n		and	assign	it	a	value	of	1.	Then	we	start	the		while		loop,
which	is	organized	in	a	similar	way	to	how	we	defined	a	function.	The	statement	that	we
are	testing	comes	in	parentheses	after	the		while		command;	in	this	case	we	want	to
know	if	the	statement		n	<	5		is		true		or		false	.	Since		1	<	5	,	the	statement	is		true	
and	we	enter	into	the	loop	after	the	colon.

NOTE:	Notice	the	indentation	on	the	lines	after	the	colon.	Just	like	when	we
defined	a	function,	this	spacing	is	important	The	colon	and	indenting	let	Python
know	that	the	next	lines	are	inside	the	while	loop.	As	soon	as	Python	sees	a	line
that	isn't	indented,	that	line	and	the	rest	of	the	code	after	it	will	be	considered
outside	of	the	loop.

Once	we've	entered	the	loop,	we	print	the	value	of	the	variable		n	,	then	we	add	1	to	its
value.	Now		n		is	2,	and	we	go	back	to	test	our		while		statement.	This	is	still	true,	since
	2	<	5	,	so	we	run	through	the	next	two	lines	of	code	again…	And	we	keep	on	with	this
pattern	while	the	statement		n	<	5		is		true	.

As	soon	as	this	statement	becomes		false	,	we're	completely	done	with	the	loop;	we
jump	straight	to	the	end	and	continue	on	with	the	rest	of	the	script,	in	this	case	printing
out	"Loop	finished	"

Real	Python	Part	1:	Introduction	to	Python

57Run	in	circles

Go	ahead	and	test	out	different	variations	of	this	code	and	try	to	guess	what	your	output
will	be	before	you	run	each	script.	Just	be	careful:	it's	easy	to	create	what's	called	an
infinite	loop;	if	you	test	a	statement	that's	always	going	to	be	true,	you	will	never	break
out	of	the	loop,	and	your	code	will	just	keep	running	forever.

NOTE:	It's	important	to	be	consistent	with	indentation,	too.	Notice	how	you	can	hit
tab	and	backspace	to	change	indentation,	and	IDLE	automatically	inserts	four
space	characters.	That's	because	you	can't	mix	tabs	and	spaces	as	indentation.
Although	IDLE	won't	let	you	make	this	mistake,	if	you	were	to	open	your	script	in	a
different	text	editor	and	replace	some	of	the	space	indentation	with	tabs,	Python
would	get	confused	-	even	though	the	spacing	looks	the	same	to	you.

The	second	type	of	loop,	a		for		loop,	is	slightly	different	in	Python.	We	typically	use
	for		loops	in	Python	in	order	to	loop	over	every	individual	item	in	a	set	of	similar	things	-
these	things	could	be	numbers,	variables,	lines	from	an	input	file,	etc.

For	instance,	the	following	code	does	the	exact	same	thing	as	our	previous	script	by
using	a		for		loop	to	repeatedly	run	code	for	a	range	of	numbers:

for	n	in	range(1,	5):

				print("n	=",	n)

print("Loop	finished")

Here	we	are	using	the		range()		function,	which	is	a	function	that	is	built	into	Python,	to
return	a	list	of	numbers.	The		range()		function	takes	two	input	values,	a	starting	number
and	a	stopping	number.	So	in	the	first	line,	we	create	a	variable		n		equal	to	1,	then	we
run	through	the	code	inside	of	our	loop	for		n	=	1	.

We	then	run	through	the	loop	again	for		n	=	2	,	etc.,	all	the	way	through	our	range	of
numbers.	Once	we	get	to	the	end	of	the	range,	we	jump	out	of	the	loop.	Yes,	it's	slightly
counter-intuitive,	but	in	Python	a		range(x,	y)		starts	at	x	but	ends	right	before	y.

NOTE:	When	we	use	a		for		loop,	we	don't	need	to	define	the	variable	we'll	be
looping	over	first.	This	is	because	the	for	loop	reassigns	a	new	value	to	the
variable	each	time	we	run	through	the	loop.	In	the	above	example,	we	assigned
the	value	1	to	the	object		n		as	soon	as	we	started	the	loop.	This	is	different	from
a	while	loop,	where	the	first	thing	we	do	is	to	test	some	condition	-	which	is	why
we	need	to	have	given	a	value	to	any	variable	that	appears	in	the	while	loop
before	we	enter	the	loop.

Real	Python	Part	1:	Introduction	to	Python

58Run	in	circles

Play	around	with	some	variations	of	this	script	to	make	sure	you	understand	how	the
	for		loop	is	structured.	Again,	be	sure	to	use	the	exact	same	syntax,	including	the		in	
keyword,	the	colon,	and	the	proper	indentation	inside	the	loop.

Don't	just	copy	and	paste	the	sample	code	into	a	script	-	type	it	out	yourself.	Not
only	will	that	help	you	learn	the	concepts,	but	the	proper	indentation	won't	copy
over	correctly	anyway…

As	long	as	we	indent	the	code	correctly,	we	can	even	put	loops	inside	loops.

Try	this	out:

for	n	in	range(1,	4):

				for	j	in	["a",	"b",	"c"]:

								print("n	=",	n,	"and	j	=",	j)

Here		j		is	looping	over	a	list	of	strings;	we'll	see	how	lists	work	in	a	later	chapter,	but
this	example	is	only	to	show	that	you	don't	have	to	use	the		range()		function	with	a
	for		loop.	Since	the		j		loop	is	inside	the		n		loop,	we	run	through	the	entire		j		loop
(j="a",	j="b",	j="c")	for	each	value	that	gets	assigned	to		n		in	the	outer	loop.

We	will	use		for		loops	in	future	chapters	as	an	easy	way	to	loop	over	all	the	items
stored	in	many	different	types	of	objects	-	for	instance,	all	the	lines	in	a	file.

NOTE:	Once	your	code	is	running	in	the	interactive	window,	sometimes	you	might
accidentally	end	up	entering	a	loop	that	takes	much	longer	than	you	expected.	If
that's	the	case	(or	if	your	code	seems	"frozen"	because	of	anything	else	that's
taking	longer	than	expected),	you	can	usually	break	out	of	the	code	by	typing
CTRL+C	in	the	interactive	window.	This	should	immediately	stop	the	rest	of	your
script	from	running	and	take	you	back	to	a	prompt	in	the	interactive	window.

If	that	doesn't	seem	to	have	any	effect	(because	you	somehow	managed	to	freeze	the
IDLE	window),	you	can	usually	type	CTRL+Q	to	quit	out	of	IDLE	entirely,	much	like	"End
Task"	in	Windows	or	"Force	Quit"	on	a	Mac.

Review	exercises:

1.	 Write	a		for		loop	that	prints	out	the	integers	2	through	10,	each	on	a	new	line,	by
using	the		range()		function

2.	 Use	a		while		loop	that	prints	out	the	integers	2	through	10	(Hint:	you'll	need	to
create	a	new	integer	first;	there	isn't	a	good	reason	to	use	a	while	loop	instead	of	a
	for		loop	in	this	case,	but	it's	good	practice...)

Real	Python	Part	1:	Introduction	to	Python

59Run	in	circles

3.	 Write	a	function		doubles()		that	takes	one	number	as	its	input	and	doubles	that
number	three	times	using	a	loop,	displaying	each	result	on	a	separate	line;	test	your
function	by	calling		doubles(2)		to	display	4,	8,	and	16

Real	Python	Part	1:	Introduction	to	Python

60Run	in	circles

Assignment:	Track	your	investments
Write	a	script	invest.py	that	will	track	the	growing	amount	of	an	investment	over	time.
This	script	includes	an		invest()		function	that	takes	three	inputs:	the	initial	investment
amount,	the	annual	compounding	rate,	and	the	total	number	of	years	to	invest.	So,	the
first	line	of	the	function	will	look	like	this:

def	invest(amount,	rate,	time):

The	function	then	prints	out	the	amount	of	the	investment	for	every	year	of	the	time
period.

In	the	main	body	of	the	script	(after	defining	the	function),	use	the	following	code	to	test
your	function:

invest(100,	.05,	8)

invest(2000,	.025,	5)

Running	this	test	code	should	produce	the	following	output	exactly:

principal	amount:	$100

annual	rate	of	return:	0.05

year	1:	$105.0

year	2:	$110.25

year	3:	$115.7625

year	4:	$121.550625

year	5:	$127.62815625

year	6:	$134.009564063

year	7:	$140.710042266

year	8:	$147.745544379

principal	amount:	$2000

annual	rate	of	return:	0.025

year	1:	$2050.0

year	2:	$2101.25

year	3:	$2153.78125

year	4:	$2207.62578125

year	5:	$2262.81642578

Real	Python	Part	1:	Introduction	to	Python

61Assignment:	Track	your	investments

NOTE:	Although	functions	usually	return	output	values,	this	is	entirely	optional	in
Python.	Functions	themselves	can	print	output	directly	as	well.	You	can	print	as
much	as	you	like	from	inside	a	function,	and	the	function	will	continue	running	until
you	reach	its	end.*

Some	additional	pointers	if	you're	stuck:

1.	 You	will	need	to	use	a		for		loop	over	a	range	that's	based	on	the	function's	time
input.

2.	 Within	your	loop,	you	will	need	to	reassign	a	new	value	to	the	amount	every	year
based	on	how	it	grows	at	1	+	rate.

3.	 Remember	that	you	need	to	use	either	the	string		format()		method	or		str()		to
convert	numbers	to	strings	first	if	you	want	to	print	both	strings	and	numbers	in	a
single	statement.

4.	 Using	the		print()		function	without	passing	any	arguments	will	print	a	blank	line.

Real	Python	Part	1:	Introduction	to	Python

62Assignment:	Track	your	investments

Interlude:	Debug	your	code
You've	probably	already	discovered	how	easy	it	is	to	make	mistakes	that	IDLE	can't
automatically	catch	for	you.	As	your	code	becomes	longer	and	more	complicated,	it	can
become	a	lot	more	difficult	to	track	down	the	sources	of	these	errors.

When	we	learned	about	syntax	and	run-time	errors,	I	actually	left	out	a	third,	most
difficult	type	of	error	that	you've	probably	already	experienced:	the	logic	error.	Logic
errors	occur	when	you've	written	a	program	that,	as	far	as	your	computer	is	concerned,
is	a	completely	"valid"	program	that	it	has	no	trouble	running	-	but	the	program	doesn't
do	what	you	intended	it	to	do	because	you	made	a	mistake	somewhere.

Programmers	use	debuggers	to	help	get	these	bugs	out	of	their	programs	(we're	clever
with	names	like	that),	and	there's	already	a	simple	debugger	built	into	IDLE	that	you
should	learn	to	use	-	before	you	need	to	use	it.

NOTE:	Although	debugging	is	the	least	glamorous	and	most	boring	part	of
programming,	learning	to	make	good	use	of	a	debugger	can	save	you	a	lot	of	time
in	the	end.	We	all	make	mistakes;	it's	a	good	idea	to	learn	how	to	find	and	fix
them.

From	the	file	menu	of	the	interactive	window	of	IDLE	(not	in	a	script	window),	click	on
Debug	->	Debugger	to	open	the	Debug	Control	window.

Notice	how	the	interactive	window	now	shows	[DEBUG	ON]	at	the	prompt	to	let	you
know	that	the	debugger	is	open.	We	have	a	few	main	options	available	to	us,	all	of	which
will	be	explained	shortly:	Go,	Step,	Over,	Out,	and	Quit.

Keep	both	the	debugger	window	and	the	interactive	window	open,	but	let's	also	start	a
new	script	so	that	we	can	see	how	the	debugger	works:

for	i	in	range(1,	4):

				j	=	i	*	2

				print("i	is",	i,	"and	j	is",	j)

If	you	run	this	script	while	you	have	the	debugger	open,	you'll	notice	that	it	doesn't	get
very	far.	Actually,	it	pauses	before	running	anything	at	all,	and	the	"Stack"	window	at	the
top	of	the	debugger	says:

Real	Python	Part	1:	Introduction	to	Python

63Interlude:	Debug	your	code

>>>	'__main__'.<module>(),	line	1:	for	i	in	range(1,	4):

All	this	is	telling	us	is	that	line	1	(which	contains	the	code		for	i	in	range(1,	4):)	is
about	to	be	run.	The	beginning	of	the	"Stack"	line	in	the	debugger	refers	to	the	fact	that
we're	currently	in	the	"main"	section	of	the	script	-	for	instance,	as	opposed	to	being	in	a
function	definition	before	the	main	block	of	code	has	been	reached.

The	debugger	allows	us	to	step	through	the	code	line	by	line,	keeping	track	of	all	our
variables	as	we	go.	So,	let's	go	ahead	and	click	once	on	"Step"	in	the	debugger	in	order
to	do	that.	Watch	carefully	what	happens	to	the	debugger	window	when	you	do	that…

Now	the	"Stack"	window	in	the	debugger	says	that	we're	about	to	run	line	2	of	the	code,
which	means	that	line	1	has	been	executed.	Below	that,	the	"Globals	and	Locals"
window	includes	a	new	variable	i	that's	been	assigned	the	value	1.	This	is	because	the
for	loop	in	the	first	line	of	our	code	created	this	integer	i	and	gave	it	that	starting	value.
(There	are	also	a	few	internal	system	variables	listed	above	it,	but	we	can	ignore	those.)

Continue	hitting	the	"Step"	button	to	walk	through	your	code	line	by	line,	watching	what
happens	in	the	debugger	window.	When	you	arrive	at	the	print	statement,	a	new	window
will	pop	open.	This	is	appearing	because	we	called		print()	.	It	is	the	internal	Python
code	being	used	to	print	output	to	the	interactive	window.	Don't	worry	about	this	for	now.

More	importantly,	you	can	track	the	growing	values	of	i	and	j	as	you	loop	through	the	for
statement,	and	output	is	displayed	in	the	interactive	window	as	usual	when	the	print
statements	are	run.

Usually,	we	only	want	to	debug	a	particular	section	of	the	code,	so	spending	all	day
clicking	the	"Step"	button	is	less	than	ideal.	This	is	the	idea	behind	setting	a	breakpoint.

Breakpoints	tell	the	debugger	when	to	start	pausing	your	code.	They	don't	actually	break
anything;	they're	more	like	"hang	on	a	second,	let	me	take	a	look	at	things	first"-points.

Let's	learn	to	use	breakpoints	by	working	with	the	following	example	code,	which	isn't
quite	doing	what	we	want	it	to	do	yet:

Real	Python	Part	1:	Introduction	to	Python

64Interlude:	Debug	your	code

def	add_underscores(word):

				new_word	=	"_"

				for	i	in	range(0,	len(word)):

								new_word	=	word[i]	+	"_"

				return	new_word

phrase	=	"hello	"

print(add_underscores(phrase))

What	we	meant	for	the	function		add_underscores()		to	do	was	to	add	underscores
around	every	character	in	the	word	passed	to	it,	so	that	we	could	give	it	the	input	"hello	"
and	it	would	return	the	output:

_h_e_l_l_o_	_

Instead,	all	we	see	right	now	is:

	_

It	might	already	be	obvious	to	you	what	our	error	was,	but	let's	use	the	debugger	to	work
through	the	problem.	We	know	that	the	problem	is	occurring	somewhere	inside	in	the
function	-	specifically,	within	the	for	loop,	since	we	said	that	newword	should	start	with	a
""	but	it	clearly	doesn't.	So	let's	put	a	breakpoint	at	the	start	of	the	for	loop	so	that	we	can
trace	out	exactly	what's	happening	inside.

To	set	a	breakpoint	on	a	line,	right-click	(Mac:	control-click	or	two	finger	click)	on	that	line
and	select	"Set	Breakpoint",	which	should	highlight	the	line	to	let	you	know	that	the
breakpoint	is	active.

Now	we	can	run	the	script	with	the	debugger	open.	It	will	still	pause	on	the	very	first	line
it	sees	(which	is	defining	the	function),	but	we	can	select	"Go"	to	run	through	the	code
normally.	This	will	save	the	function	in	Python's	memory,	save	the	variable	phrase	as
"hello	",	call	up	our	function	from	the	print	statement…	and	then	pause	at	our	breakpoint,
right	before	entering	the	for	loop.

At	this	point,	we	see	that	we	have	two	local	variables	defined	(they're	"local"	because
they	belong	to	the	function).	As	expected,	we	have	new_word,	which	is	a	string	with	just
the	underscore	character,	and	we	have	word,	the	variable	we	passed	to	the	function,
with	"hello	"	as	its	contents.

Real	Python	Part	1:	Introduction	to	Python

65Interlude:	Debug	your	code

Click	"Step"	once	and	you'll	see	that	we've	entered	the	for	loop.	The	counter	we're	using,
i,	has	been	given	its	first	value	of	0.

Click	"Step"	one	more	time,	and	it	might	become	clearer	what's	happening	in	our	code.
The	variable	newword	has	taken	on	the	value	"h"…	It	got	rid	of	our	first	underscore
character	already	If	you	click	"Step"	a	few	more	times,	you'll	see	that	newword	gets	set
to	"e",	then	"l_",	etc.	We've	been	overwriting	the	contents	of	new_word	instead	of	adding
to	it,	and	so	we	correct	the	line	to:

new_word	=	new_word	+	word[i]	+	"_"

Of	course,	the	debugger	couldn't	tell	us	exactly	how	to	fix	the	problem,	but	it	helped	us
identify	where	the	problem	occurred	and	what	exactly	the	unexpected	behavior	was.

You	can	remove	a	breakpoint	at	any	time	by	right-clicking	(Mac:	control-click	or	two
finger	click)	and	selecting	"Clear	Breakpoint".

In	the	debugger,	"Quit"	does	just	that	-	immediately	quits	out	of	the	program	entirely,
regardless	of	where	you	were	in	the	script.	The	option	"Over"	is	sort	of	a	combination	of
"Step"	and	"Go"	-	it	will	step	over	a	function	or	loop.	In	other	words,	if	you're	about	to
"Step"	into	a	function	with	the	debugger,	you	can	still	run	that	function's	code	without
having	to	"Step"	all	the	way	through	each	line	of	it	-	"Over"	will	take	you	directly	to	the
end	result	of	running	that	function.	Likewise,	if	you're	already	inside	of	a	function,	"Out"
will	take	you	directly	to	the	end	result	of	that	function.

NOTE:	When	trying	to	reopen	the	debugger,	you	might	see	this	error:		You	can
only	toggle	the	debugger	when	idle	

It's	most	likely	because	you	closed	out	of	the	debugger	while	your	script	was	still
running.	Always	be	sure	to	hit	"Go"	or	"Quit"	when	you're	finished	with	a
debugging	session	instead	of	just	closing	the	debugger,	or	you	might	have	trouble
reopening	it.	The	IDLE	debugger	isn't	the	most	carefully	crafted	piece	of	software	-
sometimes	you'll	just	have	to	exit	out	of	IDLE	and	reopen	your	script	to	make	this
error	go	away.

Debugging	can	be	tricky	and	time-consuming,	but	sometimes	it's	the	only	reliable	way	to
fix	errors	that	you've	overlooked.	However,	before	turning	to	the	debugger,	in	some
cases	you	can	just	use	print	statements	to	your	advantage	to	figure	out	your	mistakes
much	more	easily.

Real	Python	Part	1:	Introduction	to	Python

66Interlude:	Debug	your	code

The	easiest	way	to	do	this	is	to	print	out	the	contents	of	variables	at	specific	points
throughout	your	script.	If	your	code	breaks	at	some	point,	you	can	also	print	out	the
contents	of	variables	using	the	interactive	window	to	compare	how	they	appear	to	how
you	thought	they	should	look	at	that	point.

For	instance,	in	the	previous	example	we	could	have	added	the	statement	"print
new_word"	inside	of	our	for	loop.	Then	when	we	run	the	script,	we'd	be	able	to	see	how
new_word	actually	grows	(or	in	this	case,	how	it	doesn't	grow	properly).	Just	be	careful
when	using	print	statements	this	way,	especially	inside	of	loops	-	if	you	don't	plan	out	the
process	well,	it's	easy	to	end	up	displaying	thousands	of	lines	that	aren't	informative	and
only	end	up	slowing	down	or	freezing	your	program.

Or	you	could	always	try	rubber	ducking.

Real	Python	Part	1:	Introduction	to	Python

67Interlude:	Debug	your	code

http://en.wikipedia.org/wiki/Rubber_duck_debugging

Fundamentals:	Conditional	Logic
Thus	far	we	have	focused	on	writing	unconditional	code	-	e.g.,	there	are	no	choices
being	made,	and	the	code	is	always	ran.	Python	has	another	data	type	(or	primitive)
called	a	boolean	that	is	helpful	for	writing	code	that	makes	decisions,	which	is	the	focus
of	this	chapter.

Real	Python	Part	1:	Introduction	to	Python

68Fundamentals:	Conditional	Logic

Compare	Values
Computers	understand	our	world	in	binary,	breaking	every	problem	down	into	0's	and
1's.	In	order	to	make	comparisons	between	values,	we	have	to	learn	how	to
communicate	in	this	"1	or	0"	language	using	boolean	logic.	"Boolean"	refers	to	anything
that	can	only	take	on	one	of	two	values:	"true"	or	"false."

To	help	make	this	more	intuitive,	Python	has	two	special	keywords	that	are	conveniently
named	True	and	False.	The	capitalization	is	important	-	these	keywords	are	not	ordinary
variables	or	strings,	but	are	essentially	synonyms	for	1	and	0,	respectively.	Try	doing
some	arithmetic	in	the	interactive	window	using	True	and	False	inside	of	your
expressions,	and	you'll	see	that	they	behave	just	like	1	and	0:

>>>	42	*	True	+	False

42

>>>	False	*	2	-	3

-3

>>>	True	+	0.2	/	True

1.2

>>>

Before	we	can	evaluate	expressions	to	determine	whether	or	not	they	are	True	or	False,
we	need	a	way	to	compare	values	to	each	other.	We	use	a	standard	set	of	symbols
(called	boolean	comparators)	to	do	this,	and	most	of	them	are	probably	already	familiar
to	you:

1.	 	a	>	b		--->		a		greater	than		b	
2.	 	a	<	b		--->		a		less	than		b	
3.	 	a	>=	b		--->		a		greater	than	or	equal	to		b	
4.	 	a	<=	b		--->		a		less	than	or	equal	to		b	
5.	 	a	!=	b		--->		a		not	equal	to		b	
6.	 	a	==	b		--->		a		equal	to		b	

The	last	two	symbols	might	require	some	explanation.	The	symbol		!=		is	a	sort	of
shortcut	notation	for	saying	"not	equal	to."	Try	it	out	on	a	few	expressions,	like	these:

Real	Python	Part	1:	Introduction	to	Python

69Compare	Values

>>>	1	!=	2

True

>>>	1	!=	1

False

In	the	first	case,	since	1	does	not	equal	2,	we	see	the	result		True	.	Then,	in	the	second
example,	1	does	equal	1,	so	our	test	expression		1	!=	1		returns		False	.

When	we	want	to	test	if	a	equals	b,	we	can't	just	use	the	expression		a	=	b		because	in
programming,	that	would	mean	we	want	to	assign	the	value	of	b	to	a.	We	use	the
symbol		==		as	a	test	expression	when	we	want	to	see	if	a	is	equal	to	b.	For	instance,
take	a	look	at	the	two	versions	of	"equals"	here:

>>>	a	=	1

>>>	b	=	2

>>>	a	==	b

False

>>>	a	=	b

>>>	a	==	b

True

First	we	assigned		a		and		b		two	different	values.	When	we	check	whether	they	are
equal	by	using	the		a	==	b		expression,	we	get	the	result		False	.	Then,	we	reassign		a	
the	value	of		b		by	saying		a	=	b	.	Now,	since		a		and		b		are	both	equal	to	2,	we	can
test	this	relationship	again	by	saying		a	==	b		(which	is	more	of	a	question	that	we're
asking),	which	returns	the	result	of		True	.	Likewise,	we	could	ask:

>>>	a	!=	b

False

It's		True		that		2	==	2	.	So	the	opposite	expression,		a	!=	b	,	is		False	.	In	other	words,
it's	not		True		that	2	does	not	equal	2.

We	can	compare	strings	in	the	same	way	that	we	compare	numbers.	Saying	that	one
word	is	"less	than"	another	doesn't	really	mean	anything,	but	we	can	test	whether	two
strings	are	the	same	by	using	the		==		or		!=		comparators:

Real	Python	Part	1:	Introduction	to	Python

70Compare	Values

>>>	"dog"	==	"cat"

False

>>>	"dog"	==	"dog"

True

>>>	"dog"	!=	"cat"

True

Keep	in	mind	that	two	strings	have	to	have	exactly	the	same	value	for	them	to	be	equal.
For	instance,	if	one	string	has	an	extra	space	character	at	the	end	or	if	the	two	strings
have	different	capitalization,	comparing	whether	or	not	they	are	equal	will	return		False	.

Review	exercises:

1.	 Figure	out	what	the	result	will	be	(True		or		False)	when	evaluating	the	following
expressions,	then	type	them	into	the	interactive	window	to	check	your	answers:

	1	<=	1

	1	!=	1

	1	!=	2

	"good"	!=	"bad"

	"good"	!=	"Good"

	123	==	"123"

Real	Python	Part	1:	Introduction	to	Python

71Compare	Values

Add	Some	Logic
Python	also	has	special	keywords	(called	logical	operators)	for	comparing	two
expressions,	which	are:		and	,		or	,	and		not	.	These	keywords	work	much	the	same
way	as	we	use	them	in	English.

	and		keyword

Let's	start	with	the		and		keyword.	Saying	"and"	means	that	both	statements	must	be
true.	For	instance,	take	the	following	two	simple	phrases	(and	assume	they're	both	true):

1.	 cats	have	four	legs
2.	 cats	have	tails

If	we	use	these	phrases	in	combination,	the	phrase	"cats	have	four	legs	and	cats	have
tails"	is	true,	of	course.	If	we	negate	both	of	these	phrases,	"cats	do	not	have	four	legs
and	cats	do	not	have	tails"	is	false.	But	even	if	we	make	one	of	these	phrases	false,	the
combination	also	becomes	false:	"cats	have	four	legs	and	cats	do	not	have	tails"	is	a
false	phrase.	Likewise,	"cats	do	not	have	four	legs	and	cats	have	tails"	is	still	false.

Let's	try	this	same	concept	out	in	Python	by	using	some	numerical	expressions:

>>>	1	<	2	and	3	<	4	#	both	are	True

True

>>>	2	<	1	and	4	<	3	#	both	are	False

False

>>>	1	<	2	and	4	<	3	#	second	statement	is	False

False

>>>	2	<	1	and	3	<	4	#	first	statement	is	False

False

1.	 	1	<	2	and	3	<	4	:	both	statements	are		True	,	so	the	combination	is	also		True	
2.	 	<	1	and	4	<	3	:	both	statements	are		False	,	so	their	combination	is	also		False	
3.	 	1	<	2	and	4	<	3	:	the	first	statement	(1	<	2)	is		True	,	while	the	second	statement

(4	<	3)	is		False	;	since	both	statements	have	to	be		True	,	combining	them	with
the		and		keyword	gives	us		False	

4.	 	2	<	1	and	3	<	4	:	the	first	statement	(2	<	1)	is		False	,	while	the	second

Real	Python	Part	1:	Introduction	to	Python

72Add	Some	Logic

statement	(3	<	4)	is		True	;	again,	since	both	statements	have	to	be		True	,
combining	them	with	the	and	keyword	gives	us		False	

We	can	summarize	these	results	as	follows:

Combination	using		and		--->	Result

1.	 	True	and	True		--->		True	
2.	 	True	and	False		--->		False	
3.	 	False	and	True		-->		False	
4.	 	False	and	False		--->		False	

>>>	True	and	True

True

>>>	True	and	False

False

>>>	False	and	True

False

>>>	False	and	False

False

NOTE:	It	might	seem	counter-intuitive	that	"True	and	False"	is	False,	but	think
back	to	how	we	use	this	term	in	English;	the	following	phrase,	taken	in	its	entirety,
is	of	course	false:	"cats	have	tails	and	the	moon	is	made	of	cheese."

	or		keyword

The		or		keyword	means	that	at	least	one	value	must	be	true.	When	we	say	the	word
"or"	in	everyday	conversation,	sometimes	we	mean	an	"exclusive	or"	-	this	means	that
only	the	first	option	or	the	second	option	can	be	true.	We	use	an	"exclusive	or"	when	we
say	a	phrase	such	as,	"I	can	stay	or	I	can	go."	I	can't	do	both	-	only	one	of	these	options
can	be	true.

However,	in	programming	we	use	an	"inclusive	or"	since	we	also	want	to	include	the
possibility	that	both	values	are	true.	For	instance,	if	we	said	the	phrase,	"we	can	have	ice
cream	or	we	can	have	cake,"	we	also	want	the	possibility	of	ice	cream	and	cake,	so	we
use	an	"inclusive	or"	to	mean	"either	ice	cream,	or	cake,	or	both	ice	cream	and	cake."

Again,	we	can	try	this	concept	out	in	Python	by	using	some	numerical	expressions:

Real	Python	Part	1:	Introduction	to	Python

73Add	Some	Logic

>>>	1	<	2	or	3	<	4	#	both	are	True

True

>>>	2	<	1	or	4	<	3	#	both	are	False

False

>>>	1	<	2	or	4	<	3	#	second	statement	is	False

True

>>>	2	<	1	or	3	<	4	#	first	statement	is	False

True

If	any	part	of	our	expression	is	True,	even	if	both	parts	are	True,	the	result	will	also	be
True.	We	can	summarize	these	results	as	follows:

Combination	using		or		--->	Result

1.	 	True	or	True		--->		True	
2.	 	True	or	False		--->		True	
3.	 	False	or	True		-->		True	
4.	 	False	or	False		--->		False	

>>>	True	or	True

True

>>>	True	or	False

True

>>>	False	or	True

True

>>>	False	or	False

False

We	can	also	combine	the	"and"	and	"or"	keywords	using	parentheses	to	create	more
complicated	statements	to	evaluate,	such	as	the	following:

>>>	False	or	(False	and	True)

False

>>>	True	and	(False	or	True)

True

	not		keyword

Real	Python	Part	1:	Introduction	to	Python

74Add	Some	Logic

Finally,	as	you	would	expect,	the		not		keyword	simply	reverses	the	truth	of	a	single
statement:

Effect	of	using		not		--->	Result

1.	 	not	True		--->		False	
2.	 	not	False		--->		True	

Using	parentheses	for	grouping	statements	together,	we	can	combine	these	keywords
with		True		and		False		to	create	more	complex	expressions.	For	instance:

>>>	(not	False)	or	True

True

>>>	False	or	(not	False)

True

We	can	now	combine	these	keywords	with	the	boolean	comparators	that	we	learned	in
the	previous	section	to	compare	much	more	complicated	expressions.	For	instance,
here's	a	somewhat	more	involved	example:

True	and	not	(1	!=	1)

We	can	break	this	statement	down	by	starting	on	the	far	right	side,	as	follows:

1.	 We	know	that		1	==	1		is		True	,	therefore…
2.	 	1	!=	1		is		False	,	therefore…		not	(1	!=	1)		can	be	simplified	to		not	(False`)
3.	 	not	False		is		True	
4.	 Now	we	can	use	this	partial	result	to	solve	the	full	expression…
5.	 	True	and	not	(1	!=	1)		can	be	simplified	to		True	and	True	
6.	 	True	and	True		evaluates	to	be		True	

When	working	through	complicated	expressions,	the	best	strategy	is	to	start	with	the
most	complicated	part	(or	parts)	of	the	expression	and	build	outward	from	there.	For
instance,	try	evaluating	this	example:

("A"	!=	"A")	or	not	(2	>=	3)

We	can	break	this	expression	down	into	two	sections,	then	combine	them:

1.	 We'll	start	with	the	expression	on	the	left	side	of	the		or		keyword
2.	 We	know	that	"A"	==	"A"	is		True	,	therefore…

Real	Python	Part	1:	Introduction	to	Python

75Add	Some	Logic

3.	 "A"	!=	"A"	is		False	,	and	the	left	side	of	our	expression	is		False	
4.	 Now	on	the	right	side	of	the		or	,		2	>=	3		is		False	,	therefore…		not	(2	>=	3)		is

	True	

5.	 So	our	entire	expression	simplifies	to		False	or	True	
6.	 	False	or	True		evaluates	to	be		True	

Did	you	notice	that	we	didn't	have	to	use	parentheses	to	express	either	of	these
examples?	However,	it's	usually	best	to	include	parentheses	as	long	as	they	help	to
make	a	statement	more	easily	readable.

NOTE:	You	should	feel	very	comfortable	using	various	combinations	of	these
keywords	and	boolean	comparisons.	Play	around	in	the	interactive	window	(shell),
creating	more	complicated	expressions	and	trying	to	figure	out	what	the	answer
will	be	before	checking	yourself,	until	you	are	confident	that	you	can	decipher
boolean	logic.

Review	exercises:

1.	 Figure	out	what	the	result	will	be	(True		or		False)	when	evaluating	the	following
expressions,	then	type	them	into	the	interactive	window	to	check	your	answers:

	(1	<=	1)	and	(1	!=	1)

	not	(1	!=	2)

	("good"	!=	"bad")	or	False

	("good"	!=	"Good")	and	not	(1	==	1)

Real	Python	Part	1:	Introduction	to	Python

76Add	Some	Logic

Control	the	Flow	of	Your	Program
So	far,	we	haven't	really	let	our	programs	make	any	decisions	on	their	own	-	we've	been
supplying	a	series	of	instructions,	which	our	scripts	follow	in	a	specific	order	regardless
of	the	inputs	received.

However,	now	that	we	have	precise	ways	to	compare	values	to	one	other,	we	can	start
to	build	logic	into	our	programs;	this	will	let	our	code	"decide"	to	go	in	one	direction	or
another	based	on	the	results	of	our	comparisons.

We	can	do	this	by	using		if		statements	to	test	when	certain	conditions	are		True	.

NOTE:	The	'if'	statement	is	one	of	the	most	commonly	used	'things'	in	Python	(or
any	programming	language,	for	that	matter).	If	you're	flying	through	this	course,
slow	down	at	this	point	and	really	focus	on	integrating	this	material.

Here's	a	simple	example	of	an		if		statement:

if	2	+	2	==	4:

				print("2	and	2	is	4")

				print("Arithmetic	works.")

Just	like	when	we	created		for		and		while		loops,	when	we	use	an		if		statement,	we
have	a	test	condition	and	an	indented	block	of	text	that	will	run	or	not	based	on	the
results	of	that	test	condition.	Here,	our	test	condition	(which	comes	after	the		if	
keyword)	is		2	+	2	==	4	.	Since	this	expression	is		True	,	our		if		statement	evaluates	to
	True		and	all	of	the	code	inside	of	our		if		statement	is	run,	displaying	the	two	lines.	We
happened	to	use	two	print	statements,	but	we	could	really	put	any	code	inside	the		if	
statement.

If	our	test	condition	had	been		False		(for	instance,		2	+	2	!=	4),	nothing	would	have
been	displayed	because	our	program	would	have	jumped	past	all	of	the	code	inside	this
"if	block"	after	finding	that	the		if		statement	evaluated	to		False	.

There	are	two	other	related	keywords	that	we	can	use	in	combination	with	the		if	
keyword:		else		and		elif	.	We	can	add	an		else		statement	after	an		if		statement	like
so:

Real	Python	Part	1:	Introduction	to	Python

77Control	the	Flow	of	Your	Program

if	2	+	2	==	4:

				print("2	and	2	is	4")

				print("Arithmetic	works.")

else:

				print("2	and	2	is	not	4")

				print("Big	Brother	wins.")

The		else		statement	doesn't	have	a	test	condition	of	its	own	because	it	is	a	"catch-all"
block	of	code;	our	else	is	just	a	synonym	for	"otherwise."	So	if	the	test	condition	of	the
	if		statement	had	been		False	,	the	two	lines	inside	of	the	"else	block"	would	have	run
instead.	However,	since	our	test	condition	(2	+	2	==	4)	is		True	,	the	section	of	code
inside	the	"else	block"	is	not	run.

The		elif		keyword	is	short	for	"else	if"	and	can	be	used	to	add	additional	options	(or
conditions)	after	an		if		statement.	For	instance,	we	could	combine	an		if	,	an		elif	,
and	an		else		into	a	single	script	like	this:

num	=	15

if	num	<	10:

				print("number	is	less	than	10")

elif	num	>	10:

				print("number	is	greater	than	10")

else:

				print("number	is	equal	to	10")

After	creating	an	integer	object	named		num		with	a	value	of	15,	we	first	test	whether	or
not	our		num		is	less	than	10;	since	this	condition	is		False	,	we	jump	over	the	first		print	
statement	without	running	it.	We	land	at	the		elif		statement,	which	(because	the	test
condition	of	the		if		statement	was		False)	offers	us	an	alternative	test;	since	15	>	10,
this	condition	is		True	,	and	we	display	the	second		print		statement's	text.	Since	one	of
our	test	conditions	was		True	,	we	skip	over	the	else	statement	entirely;	if	both	the		if	
and	the		elif		had	been		False	,	however,	we	would	have	displayed	the	last	line	in	the
	else		statement.

This	is	called	branching	because	we	are	deciding	which	"branch"	of	the	code	to	go
down;	we	have	given	our	code	different	paths	to	take	based	on	the	results	of	the	test
conditions.	Try	running	the	script	above	and	changing		num		to	be	a	few	different	values
to	make	sure	you	understand	how		if	,		elif		and		else		work	together.

Real	Python	Part	1:	Introduction	to	Python

78Control	the	Flow	of	Your	Program

You	can	also	try	getting	rid	of	the	"else	block"	entirely;	we	don't	have	to	give	our	code	a
path	to	go	down,	so	it's	completely	acceptable	if	we	skip	over	the	entire	set	of		if	/	elif	
statements	without	taking	any	action.	For	instance,	get	rid	of	the	last	two	lines	in	the
script	above	and	try	running	it	again	with		num	=	10	.

It's	important	to	note	that		elif		can	only	be	used	after	an		if		statement	and	that		else	
can	only	be	used	at	the	end	of	a	set	of		if	/	elif		statements	(or	after	a	single		if),
since	using	one	of	these	keywords	without	an		if		wouldn't	make	any	sense.	Likewise,	if
we	want	to	do	two	separate	tests	in	a	row,	we	should	use	two	separate		if		statements.

For	instance,	try	out	this	short	script:

if	1	<	2:

				print("1	is	less	than	2")

elif	3	<	4:

				print("3	is	less	than	4")

else:

				print("Who	moved	my	cheese?")

The	first	test	condition	(1	<	2)	is		True	,	so	we	print	the	first	line	inside	the	"if	block".
Since	we	already	saw	one		True		statement,	however,	the	program	doesn't	even	bother
to	check	whether	the	"elif	block"	or	the	"else	block"	should	be	run;	these	are	only
alternative	options.	So,	even	though	it's		True		that	3	is	less	than	4,	we	only	ever	run	the
first	print	statement.

Just	like	with		for		and		while		loops,	we	can	nest		if		statements	inside	of	each	other
to	create	more	complicated	paths:

want_cake	=	"yes"

have_cake	=	"no"

if	want_cake	==	"yes":

				print("We	want	cake...")

				if	have_cake	==	"no":

								print("But	we	don't	have	any	cake")

				elif	have_cake	==	"yes":

								print("And	it's	our	lucky	day")

else:

				print("The	cake	is	a	lie.")

In	this	example,	we	first	check	if	we	want	cake	-	and	since	we	do,	we	enter	the	first	"if
block".	After	displaying	our	desire	for	cake,	we	enter	the	inside	set	of		if	/	elif	
statements.	We	check	and	display	that	we	don't	have	any	cake.	If	it	had	been	the	case

Real	Python	Part	1:	Introduction	to	Python

79Control	the	Flow	of	Your	Program

that		have_cake		was	"yes"	then	it	would	have	been	our	lucky	day.	On	the	other	hand,	if
	have_cake		had	been	any	value	other	than	"yes"	or	"no"	then	we	wouldn't	have	displayed
a	second	line	at	all,	since	we	used		elif		rather	than		else	.	If	(for	whatever	twisted
reason)	we	had	set	the	value	of		want_cake		to	anything	other	than	"yes",	we	would	have
jumped	down	to	the	bottom		else		and	only	displayed	the	last		print		statement.

Review	exercises:

1.	 Write	a	script	that	prompts	the	user	to	enter	a	word	using	the		input()		function,
stores	that	input	in	a	variable,	and	then	displays	whether	the	length	of	that	string	is
less	than	5	characters,	greater	than	5	characters,	or	equal	to	5	characters	by	using
a	set	of		if	,		elif		and		else		statements.

Real	Python	Part	1:	Introduction	to	Python

80Control	the	Flow	of	Your	Program

Assignment:	Find	the	factors	of	a	number
1.	 Write	a	script	factors.py	that	includes	a	function	to	find	all	of	the	integers	that	divide

evenly	into	an	integer	provided	by	the	user.	A	sample	run	of	the	program	should
look	like	this	(with	the	user's	input	highlighted	in	bold):

	>>>

	Enter	a	positive	integer:	12

	1	is	a	divisor	of	12

	2	is	a	divisor	of	12

	3	is	a	divisor	of	12

	4	is	a	divisor	of	12

	6	is	a	divisor	of	12

	12	is	a	divisor	of	12

	>>>

You	should	use	the		%		operator	to	check	divisibility.	This	is	called	the	"modulus
operator"	and	is	represented	by	a	percent	symbol	in	Python.	It	returns	the	remainder	of
any	division.	For	instance,	3	goes	into	16	a	total	of	5	times	with	a	remainder	of	1,
therefore	16	%	3	returns	1.	Meanwhile,	since	15	is	divisible	by	3,	15	%	3	returns	0.

Also	keep	in	mind	that		input()		always	returns	a	string,	so	you	will	need	to	convert	this
value	to	an	integer	before	using	it	in	any	calculations.

Real	Python	Part	1:	Introduction	to	Python

81Assignment:	Find	the	factors	of	a	number

Break	Out	of	the	Pattern
There	are	two	main	keywords	that	help	to	control	the	flow	of	programs	in	Python:		break	
and		continue	.	These	keywords	can	be	used	in	combination	with		for		and		while	
loops	and	with		if		statements	to	allow	us	more	control	over	where	we	are	in	a	loop.

Let's	start	with		break	,	which	does	just	that:	it	allows	you	to	break	out	of	a	loop.	If	we
wanted	to	break	out	of	a	for	loop	at	a	particular	point,	our	script	might	look	like	this:

for	i	in	range(0,	4):

				if	i	==	2:

								break

				print(i)

print("Finished	with	i	=	",	str(i))

Without	the		if		statement	that	includes	the	break	command,	our	code	would	normally
just	print	out	the	following	output:

0

1

2

3

Finished	with	i	=	3

Instead,	each	time	we	run	through	the	loop,	we	are	checking	whether		i	==	2	.	When
this	is		True	,	we	break	out	of	the	loop;	this	means	that	we	quit	the	for	loop	entirely	as
soon	as	we	reach	the	break	keyword.	Therefore,	this	code	will	only	display:

0

1

Finished	with	i	=	2

Notice	that	we	still	displayed	the	last	line	since	this	wasn't	part	of	the	loop.	Likewise,	if
we	were	in	a	loop	inside	another	loop,		break		would	only	break	out	of	the	inner	loop;	the
outer	loop	would	continue	to	run	(potentially	landing	us	back	inside	the	inner	loop	again).

Much	like		break	,	the		continue		keyword	jumps	to	the	end	of	a	loop;	however,	instead
of	exiting	a	loop	entirely,		continue		says	to	go	back	to	the	top	of	the	loop	and	continue
with	the	next	item	of	the	loop.	For	instance,	if	we	had	used		continue		instead	of		break	

Real	Python	Part	1:	Introduction	to	Python

82Break	Out	of	the	Pattern

in	our	last	example-

for	i	in	range(0,	4):

				if	i	==	2:

								continue

				print(i)

print("Finished	with	i	=	",	str(i))

-we're	now	skipping	over	the		print	i		command	when	our		if		statement	is		True	,	and
so	our	output	includes	everything	from	the	loop	except	displaying		i		when		i	==	2	:

0

1

3

Finished	with	i	=	3

NOTE:	It's	always	a	good	idea	to	give	short	but	descriptive	names	to	your
variables	that	make	it	easy	to	tell	what	they	are	supposed	to	represent.	The	letters
i,	j	and	k	are	exceptions	because	they	are	so	common	in	programming;	these
letters	are	almost	always	used	when	we	need	a	"throwaway"	number	solely	for	the
purpose	of	keeping	count	while	working	through	a	loop.

Loops	can	have	their	own		else		statements	in	Python	as	well,	although	this	structure
isn't	used	very	frequently.	Tacking	an		else		onto	the	end	of	a	loop	will	make	sure	that
your	"else	block"	always	runs	after	the	loop	unless	the	loop	was	exited	by	using	the
	break		keyword.	For	instance,	let's	use	a		for		loop	to	look	through	every	character	in	a
string,	searching	for	the	upper-case	letter	"X":

phrase	=	"it	marks	the	spot"

for	letter	in	phrase:

				if	letter	==	"X":

								break

else:

				print("There	was	no	'X'	in	the	phrase")

Here,	our	program	attempted	to	find	"X"	in	the	string	phrase,	and	would	break	out	of	the
	for		loop	if	it	had.	Since	we	never	broke	out	of	the	loop,	we	reached	the		else	
statement	and	displayed	that	"X"	wasn't	found.	If	you	try	running	the	same	program	on
the	phrase	"it	marks	X	the	spot"	or	some	other	string	that	includes	an	"X",	however,	there
will	be	no	output	at	all	because	the	block	of	code	in	the	else	will	not	be	run.

Real	Python	Part	1:	Introduction	to	Python

83Break	Out	of	the	Pattern

Likewise,	an		else		placed	after	a	while	loop	will	always	be	run	unless	the		while		loop
has	been	exited	using	a		break		statement.	For	instance,	try	out	the	following	script:

tries	=	0

while	tries	<	3:

				password	=	input("Password:	")

				if	password	==	"I<3Bieber":

								break

				else:

								tries	=	tries	+	1

else:

				print("Suspicious	activity.	The	authorities	have	been	alerted.")

Here,	we've	given	the	user	three	chances	to	enter	the	correct	password.	If	the	password
matches,	we	break	out	of	the	loop.	Otherwise	(the	first		else),	we	add	one	to	the		tries	
counter.	The	second	"else	block"	belongs	to	the	loop	(hence	why	it's	less	indented	than
the	first		else),	and	will	only	be	run	if	we	don't	break	out	of	the	loop.	So	when	the	user
enters	a	correct	password,	we	do	not	run	the	last	line	of	code,	but	if	we	exit	the	loop
because	the	test	condition	was	no	longer		True		(i.e.,	the	user	tried	three	incorrect
passwords),	then	it's	time	to	alert	the	authorities.

A	commonly	used	shortcut	in	Python	is	the		+=		operator,	which	is	shorthand	for	saying
"increase	a	number	by	some	amount".	For	instance,	in	our	last	code	example	above,
instead	of	the	line:		tries	=	tries	+	1	,	we	could	have	done	the	exact	same	thing
(adding	1	to		tries)	by	saying:		tries	+=	1	.

In	fact,	this	works	with	the	other	basic	operators	as	well;		-=		means	"decrease",		*=	
means	"multiply	by",	and		/=		means	"divide	by".

For	instance,	if	we	wanted	to	change	the	variable		tries		from	its	original	value	to	that
value	multiplied	by	3,	we	could	shorten	the	statement	to	say:		tries	*=	3	

Review	exercises:

1.	 Use	a		break		statement	to	write	a	script	that	prompts	the	users	for	input	repeatedly,
only	ending	when	the	user	types	"q"	or	"Q"	to	quit	the	program;	a	common	way	of
creating	an	infinite	loop	is	to	write		while	True:	.

2.	 Combine	a		for		loop	over	a		range()		of	numbers	with	the		continue		keyword	to
print	every	number	from	1	through	50	except	for	multiples	of	3;	you	will	need	to	use
the		%		operator.

Real	Python	Part	1:	Introduction	to	Python

84Break	Out	of	the	Pattern

Real	Python	Part	1:	Introduction	to	Python

85Break	Out	of	the	Pattern

Recover	from	errors
You've	probably	already	written	lots	of	scripts	that	generated	errors	in	Python.	Run-time
errors	(so-called	because	they	happen	once	a	program	is	already	running)	are	called
exceptions.	Congratulations	-	you've	made	the	code	do	something	exceptional.

There	are	different	types	of	exceptions	that	occur	when	different	rules	are	broken.	For
instance,	try	to	get	the	value	of	"1	/	0"	at	the	interactive	window,	and	you'll	see	a
ZeroDivisionError	exception.	Here's	another	example	of	an	exception,	a		ValueError	,
that	occurs	when	we	try	(and	fail)	to	turn	a	string	into	an	integer:

>>>	int("not	a	number")

Traceback	(most	recent	call	last):

		File	"<pyshell#1>",	line	1,	in	<module>

				int("not	a	number")

ValueError:	invalid	literal	for	int()	with	base	10:	'not	a	number'

>>>

The	name	of	the	exception	is	displayed	on	the	last	line,	followed	by	a	description	of	the
specific	problem	that	occurred.

When	we	can	predict	that	a	certain	type	of	exception	might	occur,	we	might	not	be	able
to	prevent	the	error,	but	there	are	ways	that	we	can	recover	from	the	problem	more
gracefully	than	having	our	program	break	and	display	lots	of	angry	messages.

In	order	to	stop	our	code	from	breaking	because	of	a	particular	exception,	we	use	a
"try/except"	pair,	as	in	the	following:

try:

				number	=	int(input("Enter	an	integer:	"))

except	ValueError:

				print("That	was	not	an	integer.")

The	first	thing	that	happens	in	a	try/except	pair	is	that	everything	inside	of	the	"try	block"
is	run	normally.	If	no	error	occurs,	the	code	skips	over	the	"except	block"	and	continues
running	normally.	Since	we	said,		except	ValueError	,	however,	if	the	program
encounters	a		ValueError		(when	the	user	enters	something	that	isn't	an	integer),	we
jump	down	to	the	"except	block"	and	run	everything	there.	This	avoids	Python's
automatic	error	display	and	doesn't	break	the	script	since	we	"caught"	the		ValueError	.

Real	Python	Part	1:	Introduction	to	Python

86Recover	from	errors

If	a	different	kind	of	exception	had	occurred,	then	the	program	still	would	have	broken;
we	only	handled	one	type	of	exception	(a		ValueError)	with	our	"except	block".

A	single	"except	block"	can	handle	multiple	types	of	exceptions	by	separating	the
exception	names	with	commas	and	putting	the	list	of	names	in	parentheses:

def	divide(num1,	num2):

				try:

								print(num1	/	num2)

				except	(TypeError,	ZeroDivisionError):

								print("encountered	a	problem")

This	isn't	used	very	frequently	since	we	usually	want	our	code	to	react	specifically	to
each	type	of	exception	differently.	In	this	case,	we	created	a		divide()		function	that	tries
to	divide	two	numbers.	If	one	or	both	of	the	numbers	aren't	actually	numbers,	a
	TypeError		exception	will	occur	because	we	can't	use	something	that	isn't	a	number	for
division.	And	if	we	provide	0	as	the	second	number,	a		ZeroDivisionError		will	occur
since	we	can't	divide	by	zero.	Both	of	these	exceptions	will	be	caught	by	our	"except
block",	which	will	just	let	the	user	know	that	we	"encountered	a	problem"	and	continue
on	with	anything	else	that	might	be	left	in	our	script	outside	of	the	try/except	pair.

More		except		error	handling	blocks	can	be	added	after	the	first		except		to	catch
different	types	of	exceptions,	like	so:

try:

				number	=	int(input("Enter	an	non-zero	integer:	"))

				print("10	/	{}	=	{}".format(number,	10.0/number))

except	ValueError:

				print("You	did	not	enter	an	integer.")

except	ZeroDivisionError:

				print("You	cannot	enter	0.")

Here,	we	might	have	encountered	two	different	types	of	errors.	First,	the	user	might	not
have	input	an	integer;	when	we	try	to	convert	the	string	input	using		int()	,	we	raise	an
exception	and	jump	to	the	"except	ValueError:	block",	displaying	the	problem.	Likewise,
we	could	have	tried	to	divide	10	by	the	user-supplied	number	and,	if	the	user	gave	us	an
input	of	0,	we	would	have	ended	up	with	a		ZeroDivisionError		exception;	instead,	we
jump	to	the	second	"except	block"	and	display	this	problem	to	the	user.

A	list	of	Python's	built-in	exceptions	can	be	found	here.	It's	usually	easiest	to	figure
out	the	name	of	an	exception	by	purposefully	causing	the	error	to	occur	yourself,
although	you	should	then	read	the	documentation	on	that	particular	type	of	exception	to

Real	Python	Part	1:	Introduction	to	Python

87Recover	from	errors

https://docs.python.org/3.5/library/exceptions.html#bltin-exceptions

make	sure	that	your	code	will	actually	handle	all	of	the	errors	that	you	expect	and	(just
as	importantly)	that	your	program	will	still	break	if	it	encounters	a	different,	unexpected
type	of	exception.

We	can	also	use	an	"except	block"	by	itself	without	naming	specific	exceptions	to	catch:

try:

				#	do	lots	of	hazardous	things	that	might	break

except:

				print("The	user	must	have	screwed	something	up.")

However,	this	is	dangerous	to	do	and	is	usually	not	a	good	idea	at	all.	It's	easy	to	hide	a
poorly	written	section	of	code	behind	a		try/except		and	think	that	everything	was
working	fine,	only	to	discover	later	that	you	were	silencing	all	sorts	of	unexpected
problems	that	should	never	have	occurred.

For	more	on	exception	handling,	check	out	this	excellent	article.

Review	exercises:

1.	 Write	a	script	that	repeatedly	asks	the	user	to	input	an	integer,	displaying	a
message	to	"try	again"	by	catching	the		ValueError		that	is	raised	if	the	user	did	not
enter	an	integer;	once	the	user	enters	an	integer,	the	program	should	display	the
number	back	to	the	user	and	end	without	crashing

Real	Python	Part	1:	Introduction	to	Python

88Recover	from	errors

http://www.python-course.eu/exception_handling.php

Simulate	Events	and	Calculate	Probabilities
You'll	probably	find	the	assignments	in	this	section	to	be	fairly	difficult,	especially	if
you're	not	very	mathematically	inclined.	At	the	very	least,	I	encourage	you	to	read
through	this	section	for	the	information	and	try	the	assignments	out	-	if	they're	too	tricky
for	now,	move	on	and	come	back	to	them	later.

We	will	be	running	a	simple	simulation	known	as	a	Monte	Carlo	experiment.	In	order	to
do	this,	we	need	to	add	a	real-world	"element	of	chance"	to	our	code.	Python	has	built-in
functionality	for	just	that	purpose,	and	it's	suitably	called	the		random		module.

A	module	is	just	a	collection	of	related	functions.	For	now,	all	we	will	need	from	the
random	module	is	the		randint()		function.	Calling		randint(x,	y)		on	two	integers		x	
and		y		returns	a	random	(evenly	distributed)	integer	that	will	have	a	value	between		x	
and		y		-	including	both		x		and		y	,	unlike	the		range()		function.

We	can	import	this	function	into	our	program	like	so:

from	random	import	randint

Now	we	can	use	the		randint()		function	in	our	code:

print(randint(0,	1))

If	you	try	this	within	the	interactive	window,	you	should	see	something	like	this:

>>>	from	random	import	randint

>>>	print(randint(0,	1))

0

Of	course,	because	the	output	is	random,	you	have	a	50%	chance	of	getting	a	1	instead.

Okay,	let's	take	everything	we've	learned	so	far	and	put	it	all	together	to	solve	a	real
problem.	We'll	start	with	a	basic	probability	question	by	simulating	the	outcome	of	an
event.

Let's	say	we	flip	a	fair	coin	(50/50	chance	of	heads	or	tails),	and	we	keep	flipping	it	until
we	get	it	to	land	on	heads.	If	we	keep	doing	this,	we'll	end	up	with	a	bunch	of	individual
trials	that	might	include	getting	heads	on	the	first	flip,	tails	on	one	flip	and	heads	on	the

Real	Python	Part	1:	Introduction	to	Python

89Simulate	Events	and	Calculate	Probabilities

http://en.wikipedia.org/wiki/Monte_Carlo_method

second,	or	even	occasionally	tails,	tails,	tails,	tails,	tails	and	finally	heads.	On	average,
what's	our	expected	ratio	of	heads	to	tails	for	an	individual	trial?

To	get	an	accurate	idea	of	the	long-term	outcome,	we'll	need	to	do	this	lots	of	times	-	so
let's	use	a		for		loop:

for	trials	in	range(0,	10000):

We	can	use	the		randint()		function	to	simulate	a	50/50	coin	toss	by	considering	0	to
represent	"tails"	and	1	to	be	a	"heads"	flip.	The	logic	of	the	problem	is	that	we	will
continue	to	toss	the	coin	as	long	as	we	get	tails,	which	sounds	like	a	while	loop:

while	randint(0,	1)	==	0:

Now	all	we	have	to	do	is	keep	track	of	our	counts	of	heads	and	tails.	Since	we	only	want
the	average,	we	can	sum	them	all	up	over	all	our	trials,	so	our	full	script	ends	up	looking
like	the	following:

from	random	import	randint

heads	=	0

tails	=	0

for	trial	in	range(0,	10000):

				while	randint(0,	1)	==	0:

								tails	=	tails	+	1

				heads	=	heads	+	1

print("heads	/	tails	=	",	heads/tails)

Each	time	we	toss	tails,	we	add	one	to	our	total	tails	tally.	Then	we	go	back	to	the	top	of
our	while	loop	and	generate	a	new	random	number	to	test.	Once	it's	not	true	that
	randint(0,	1)	==	0	,	this	means	that	we	must	have	tossed	heads,	so	we	exit	out	of	the
while	loop	(because	the	test	condition	isn't	true	that	time)	and	add	one	to	the	total	heads
tally.

Finally,	we	just	print	out	the	result	of	our	heads-to-tails	ratio.	If	you	use	a	large	enough
sample	size	and	try	this	out	a	few	times,	you	should	be	able	to	figure	out	(if	you	hadn't
already)	that	the	ratio	approaches	1:1.

Real	Python	Part	1:	Introduction	to	Python

90Simulate	Events	and	Calculate	Probabilities

Of	course,	you	probably	could	have	calculated	this	answer	faster	just	by	working	out	the
actual	probabilities,	but	this	same	method	can	be	applied	to	much	more	complicated
scenarios.	For	instance,	one	popular	application	of	this	sort	of	Monte	Carlo	simulation	is
to	predict	the	outcome	of	an	election	based	on	current	polling	percentages.

Review	exercises:

1.	 Write	a	script	that	uses	the		randint()		function	to	simulate	the	toss	of	a	die,
returning	a	random	number	between	1	and	6.

2.	 Write	a	script	that	simulates	10,000	throws	of	dice	and	displays	the	average	number
resulting	from	these	tosses.

Real	Python	Part	1:	Introduction	to	Python

91Simulate	Events	and	Calculate	Probabilities

Assignment:	Simulate	an	election
Write	a	script	election.py	that	will	simulate	an	election	between	two	candidates,	A	and	B.
One	of	the	candidates	wins	the	overall	election	by	a	majority	based	on	the	outcomes	of
three	regional	elections.	(In	other	words,	a	candidate	wins	the	overall	election	by	winning
at	least	two	regional	elections.)	Candidate	A	has	the	following	odds:

87%	chance	of	winning	region	1
65%	chance	of	winning	region	2
17%	chance	of	winning	region	3

Import	and	use	the		random()		function	from	the		random		module	to	simulate	events
based	on	probabilities;	this	function	doesn't	take	any	arguments	(meaning	you	don't
pass	it	any	input	variables)	and	returns	a	random	value	somewhere	between	0	and	1.

Simulate	10,000	such	elections,	then	(based	on	the	average	results)	display	the
probability	that	Candidate	A	will	win	and	the	probability	that	Candidate	B	will	win.

Hint:	To	do	this,	you'll	probably	need	to	use	a		for		loop	with	a	lot	of		if	/	else	
statements	to	check	the	results	of	each	regional	election.

Real	Python	Part	1:	Introduction	to	Python

92Assignment:	Simulate	an	election

Assignment:	Simulate	a	coin	toss
experiment
Write	a	script	coin_toss.py	that	uses	coin	toss	simulations	to	determine	the	answer	to
this	slightly	more	complex	probability	puzzle:

I	keep	flipping	a	fair	coin	until	I've	seen	it	land	on	both	heads	and	tails	at	least	once	each
-	in	other	words,	after	I	flip	the	coin	the	first	time,	I	continue	to	flip	it	until	I	get	a	different
result.	On	average,	how	many	times	will	I	have	to	flip	the	coin	total?	Again,	the	actual
probability	could	be	worked	out,	but	the	point	here	is	to	simulate	the	event	using
	randint()	.	To	get	the	expected	average	number	of	tosses,	you	should	set	a	variable
	trials	=	10000		and	a	variable		flips	=	0	,	then	add	1	to	your		flips		variable	every
time	a	coin	toss	is	made.	Then	you	can	print		flips	/	trials		at	the	end	of	the	code	to
see	what	the	average	number	of	flips	was.

This	one	is	tricky	to	structure	correctly.	Try	writing	out	the	logic	before	you	start	coding.
Some	additional	pointers	if	you're	stuck:

1.	 You	will	need	to	use	a		for		loop	over	a	range	of	trials.
2.	 For	each	trial,	first	you	should	check	the	outcome	of	the	first	flip.
3.	 Make	sure	you	add	the	first	flip	to	the	total	number	of	flips.
4.	 After	the	first	toss,	you'll	need	another	loop	to	keep	flipping	while	you	get	the	same

result	as	the	first	flip.

If	you	just	want	to	check	whether	or	not	your	final	answer	is	correct	without
looking	at	the	sample	code,	click	here.

Real	Python	Part	1:	Introduction	to	Python

93Assignment:	Simulate	a	coin	toss	experiment

http://images.inmagine.com/img/aspireimages/dv282/dv282030.jpg

Fundamentals:	Lists	and	Dictionaries
Lists	are	extremely	useful	-	in	life	and	in	Python.	There	are	so	many	things	that	naturally
lend	themselves	to	being	put	into	lists	that	it's	often	a	very	intuitive	way	to	store	and
order	data.	In	Python,	a	list	is	a	type	of	object	(just	like	a	string	or	an	integer),	except	a
list	object	is	able	to	hold	other	objects	inside	of	it.	We	create	a	list	by	simply	listing	all	the
items	we	want	in	a	list,	separated	by	commas,	and	enclosing	everything	inside	square
brackets.	These	are	all	examples	of	simple	list	objects:

colors	=	["red",	"green",	"burnt	sienna",	"blue"]

scores	=	[10,	8,	9,	-2,	9]

my_list	=	["one",	2,	3.0]

The	first	object,		colors	,	holds	a	list	of	four	strings.	Our		scores		list	holds	five	integers.
And	the	last	object,		my_list	,	holds	three	different	objects	-	a	string,	an	integer	and	a
floating-point	number.	Since	we	usually	want	to	track	a	set	of	similar	items,	it's	not	very
common	to	see	a	list	that	holds	different	types	of	objects	like	our	last	example,	but	it's
possible.

Getting	a	single	item	out	of	a	list	is	as	easy	as	getting	a	single	character	out	of	a	string	-
in	fact,	it's	the	exact	same	process	of	referring	to	the	item	by	its	index	number:

>>>	colors	=	["red",	"green",	"burnt	sienna",	"blue"]

>>>	print(colors[2])

burnt	sienna

>>>

Remember,	since	we	start	counting	at	0	in	Python,	we	asked	for		colors[2]		in	order	to
get	what	we	think	of	as	the	third	object	in	the	list.	We	can	also	get	a	range	of	objects
from	a	list	in	the	same	way	that	we	got	substrings	out	of	strings:

>>>	colors	=	["red",	"green",	"burnt	sienna",	"blue"]

>>>	print(colors)

['red',	'green',	'burnt	sienna',	'blue']

>>>	print(colors[0:2])

['red',	'green']

>>>

Real	Python	Part	1:	Introduction	to	Python

94Fundamentals:	Lists	and	Dictionaries

First	we	printed	the	entire	list	of	colors,	which	displayed	almost	exactly	the	same	way	as
we	typed	it	in	originally.	Then	we	printed	the	objects	in	the	list	within	the	range	[0:2]	-	this
includes	the	objects	at	positions	0	and	1,	which	are	returned	as	a	smaller	list.	(We	can
tell	they're	still	in	a	list	because	of	the	square	brackets.)

Unlike	strings,	lists	are	mutable	objects,	meaning	that	we	can	change	individual	items
within	a	list.	For	instance:

>>>	colors	=	["red",	"green",	"burnt	sienna",	"blue"]

>>>	colors[0]	=	"burgundy"

>>>	colors[3]	=	"electric	indigo"

>>>	print(colors)

['burgundy',	'green',	'burnt	sienna',	'electric	indigo']

>>>

Since	we	can	change	the	items	in	lists,	we	can	also	create	new	lists	and	add	objects	to
them,	item	by	item.	We	create	an	empty	list	using	an	empty	pair	of	square	brackets,	and
we	can	add	an	object	to	the	list	using	the		append()		method	of	the	list:

>>>	animals	=	[]

>>>	animals.append("lion")

>>>	animals.append("tiger")

>>>	animals.append("frumious	Bandersnatch")

>>>	print(animals)

['lion',	'tiger',	'frumious	Bandersnatch']

>>>

Likewise,	we	can	remove	objects	from	the	list	using	the		remove()		method	of	the	list:

>>>	animals.remove("lion")

>>>	animals.remove("tiger")

>>>	print(animals)

['frumious	Bandersnatch']

>>>

The		extend()		method	can	be	used	to	add	more	than	one	object	to	a	list:

Real	Python	Part	1:	Introduction	to	Python

95Fundamentals:	Lists	and	Dictionaries

>>>	cities	=	[]

>>>	cities.append("New	York")

>>>	cities

['New	York']

>>>	cities.extend(["San	Francisco",	"Boston",	"Chicago"])

>>>	cities

['New	York',	'San	Francisco',	'Boston',	'Chicago']

>>>

We	can	also	use	the	list's		index()		method	to	get	the	index	number	of	a	particular	item
in	a	list	in	order	to	determine	its	position.	For	instance:

>>>	colors	=	["red",	"green",	"burnt	sienna",	"blue"]

>>>	print(colors.index("burnt	sienna"))

2

>>>

Copying	one	list	into	another	list,	however,	is	somewhat	unintuitive.	You	can't	just
reassign	one	list	object	to	another	list	object,	because	you'll	get	this	(possibly	surprising)
result:

>>>	animals	=	["lion",	"tiger",	"frumious	Bandersnatch"]

>>>	large_cats	=	animals

>>>	large_cats.append("Tigger")

>>>	print(animals)

['lion',	'tiger',	'frumious	Bandersnatch',	'Tigger']

>>>

We	tried	to	assign	the	list	stored	in	the		animals		variable	to	the	variable		large_cats	,
then	we	added	another	string	into		large_cats	.	But	when	we	display	the	contents	of
	animals	,	we	see	that	we've	also	changed	our	original	list	-	even	though	we	meant	to
create	a	new	list	by	giving		large_cats		the	values	in		animals	.

This	is	a	quirk	of	object-oriented	programming,	but	it's	by	design;	when	we	say
	large_cats	=	animals	,	we	make	the	lists		large_cats		and		animals		both	refer	to	the
same	object.	When	we	created	our	first	list,	the	name	animals	was	only	a	way	to	point	us
to	a	list	object	-	in	other	words,	the	name	animals	is	just	a	way	to	reference	the	actual	list
object	that	is	somewhere	in	the	computer's	memory.	Instead	of	copying	all	the	contents
of	the	list	object	and	creating	s	new	list,	saying		large_cats	=	animals		assigns	the	same
object	reference	to	large_cats;	both	of	our	list	names	now	refer	to	the	same	object,	and
any	changes	made	to	one	will	affect	the	other	since	both	names	point	to	the	same
object.

Real	Python	Part	1:	Introduction	to	Python

96Fundamentals:	Lists	and	Dictionaries

If	we	actually	wanted	to	copy	the	contents	of	one	list	object	into	a	new	list	object,	we
have	to	retrieve	all	the	individual	items	from	the	list	and	copy	them	over	individually.	We
don't	have	to	use	a	loop	to	do	this,	however;	we	can	simply	say:

>>>	animals	=	["lion",	"tiger",	"frumious	Bandersnatch"]

>>>	large_cats	=	animals[:]

>>>	large_cats.append("leopard")

>>>	print(large_cats)

['lion',	'tiger',	'frumious	Bandersnatch',	'leopard']

>>>	print(animals)

["lion",	"tiger",	"frumious	Bandersnatch"]

The	'[:]'	is	the	same	technique	that	we	used	to	retrieve	a	subset	of	the	list	over	some
range,	but	since	we	didn't	specify	an	index	number	on	either	side	of	the	colon,	we
grabbed	everything	from	the	first	item	through	the	last	item.

You	can	also	achieve	the	same	results	by	using	the		extend()		method:

>>>	animals	=	["lion",	"tiger",	"frumious	Bandersnatch"]

>>>	large_cats	=	[]

>>>	large_cats.extend(animals)

>>>	large_cats

['lion',	'tiger',	'frumious	Bandersnatch']

Keep	in	mind	that	because	lists	are	mutable,	there	is	no	need	to	reassign	a	list	to	itself
when	we	use	one	of	its	methods.	In	other	words,	we	only	need	to	say
	animals.append("jubjub")		to	add	the	jubjub	to	the		animals		list.	If	we	had	said		animals
=	animals.append("jubjub")	,	we	would	have	saved	the	result	returned	by	the		append()	
method	(which	is	nothing)	into	animals,	wiping	out	our	list	entirely.

This	is	true	of	all	the	methods	that	belong	to	mutable	objects.	For	instance,	lists
also	have	a		sort()		method	that	sorts	all	of	the	items	in	ascending	order	(usually
alphabetical	or	numerical,	depending	on	the	objects	in	the	list);	all	we	have	to	say	if	we
want	to	sort	the	animals	list	is		animals.sort()	,	which	alphabetizes	the	list:

>>>	animals.sort()

>>>	print(animals)

['frumious	Bandersnatch',	'jubjub',	'lion',	'tiger',	'Tigger']

>>>

If	we	had	instead	assigned	the	value	returned	by	the		sort()		method	to	our	list,	we
would	have	lost	the	list	entirely:

Real	Python	Part	1:	Introduction	to	Python

97Fundamentals:	Lists	and	Dictionaries

>>>	animals	=	animals.sort()

>>>	print(animals)

None

>>>

Since	lists	can	hold	any	objects,	we	can	even	put	lists	inside	of	lists.	We	sometimes
make	a	"list	of	lists"	in	order	to	create	a	simple	matrix.	To	do	this,	we	simply	nest	one	set
of	square	brackets	inside	of	another,	like	so:

>>>	two_by_two	=	[[1,	2],	[3,	4]]

We	have	a	single	list	with	two	objects	in	it,	both	of	which	are	also	lists	of	two	objects
each.	We	now	have	to	stack	the	index	values	we	want	in	order	to	reach	a	particular	item,
for	instance:

>>>	two_by_two[1][0]

3

>>>

Since	saying		two_by_two[1]		by	itself	would	return	the	list		[3,	4]	,	we	then	had	to
specify	an	additional	index	in	order	to	get	a	single	number	out	of	this	sub-list.

A	list	is	just	a	sequence	of	objects,	so	nested	lists	don't	have	to	be	symmetrical:

>>>	list	=	["I	heard	you	like	lists",	["so	I	put	a	list",	"in	your	list"]]

>>>	print(list)

['I	heard	you	like	lists',	['so	I	put	a	list',	'in	your	list']]

>>>

Finally,	if	we	want	to	create	a	list	from	a	single	string,	we	can	use	the	string		split()	
method	as	an	easy	way	of	splitting	one	string	up	into	individual	list	items	by	providing	the
character	(or	characters)	occurring	between	these	items.	For	instance,	if	we	had	a	single
string	of	grocery	items,	each	separated	by	commas	and	spaces,	we	could	turn	them	into
a	list	of	items	like	so:

>>>	groceries	=	"eggs,	spam,	pop	rocks,	cheese"

>>>	grocery_list	=	groceries.split(",	")

>>>	print(grocery_list)

['eggs',	'spam',	'pop	rocks',	'cheese']

>>>

Real	Python	Part	1:	Introduction	to	Python

98Fundamentals:	Lists	and	Dictionaries

Review	exercises:

1.	 Create	a	list	named		desserts		that	holds	the	two	string	values	"ice	cream"	and
"cookies"

2.	 Sort		desserts		in	alphabetical	order,	then	display	the	contents	of	the	list
3.	 Display	the	index	number	of	"ice	cream"	in	the		desserts		list
4.	 Copy	the	contents	of	the		desserts		list	into	a	new	list	object	named		food	
5.	 Add	the	strings	"broccoli"	and	"turnips"	to	the	food		list	
6.	 Display	the	contents	of	both	lists	to	make	sure	that	"broccoli"	and	"turnips"	haven't

been	added	to		desserts	
7.	 Remove	"cookies"	from	the	food		list	
8.	 Display	the	first	two	items	in	the	food		list		by	specifying	an	index	range
9.	 Create	a	list	named		breakfast		that	holds	three	strings,	each	with	the	value	of

"cookies",	by	splitting	up	the	string	"cookies,	cookies,	cookies"
10.	 Define	a	function	that	takes	a	list	of	numbers,		[2,	4,	8,	16,	32,	64]	,	as	the

argument	and	then	outputs	only	the	numbers	from	the	list	that	fall	between	1	and	20
(inclusive)

Real	Python	Part	1:	Introduction	to	Python

99Fundamentals:	Lists	and	Dictionaries

Assignment:	List	of	lists
Define	a	function,		enrollment_stats()	,	that	takes,	as	an	input,	a	list	of	lists	where	each
individual	list	contains	three	elements:	(a)	the	name	of	a	university,	(b)	the	total	number
of	enrolled	students,	and	(c)	the	annual	tuition	fees.

Sample	list:

universities	=	[

				['California	Institute	of	Technology',	2175,	37704],

				['Harvard',	19627,	39849],

				['Massachusetts	Institute	of	Technology',	10566,	40732],

				['Princeton',	7802,	37000],

				['Rice',	5879,	35551],

				['Stanford',	19535,	40569],

				['Yale',	11701,	40500]

]

This	function	should	return	two	lists:	the	first	containing	all	of	the	student	enrollment
values	and	the	second	containing	all	of	the	tuition	fees.

Next,	define	a		mean()		and	a		median()		function.	Both	functions	should	take	a	single	list
as	an	argument	and	return	the	mean	and	median	from	the	values	in	each	list.	Use	the
return	values	from		enrollment_stats()		as	arguments	for	each	function.	Challenge
yourself	by	finding	a	way	to	sum	all	the	values	in	a		list		without	using	the	built-in
'sum()'	function	for	calculating	the	mean.

At	some	point	you	should	calculate	the	total	students	enrolled	and	the	total	tuition	paid.

Finally,	output	all	values:

Total	students:			77285

Total	tuition:		$	271905

Student	mean:					11040

Student	median:			10566

Tuition	mean:			$	38843

Tuition	median:	$	39849

Real	Python	Part	1:	Introduction	to	Python

100Assignment:	List	of	lists

Real	Python	Part	1:	Introduction	to	Python

101Assignment:	List	of	lists

Assignment:	Wax	poetic
Write	a	script	poetry.py	that	will	generate	a	poem	based	on	randomly	chosen	words	and
a	pre-determined	structure.	When	you	are	done,	you	will	be	able	to	generate	poetic
masterpieces	such	as	the	following	in	mere	milliseconds:

A	furry	horse

A	furry	horse	curdles	within	the	fragrant	mango

extravagantly,	the	horse	slurps

the	mango	meows	beneath	a	balding	extrovert

All	of	the	poems	will	have	this	same	general	structure,	inspired	by	Clifford	Pickover:

{A/An}	{adjective1}	{noun1}

{A/An}	{adjective1}	{noun1}	{verb1}	{preposition1}	the	{adjective2}	{noun2}

{adverb1},	the	{noun1}	{verb2}

the	{noun2}	{verb3}	{preposition2}	a	{adjective3}	{noun3}

Your	script	should	include	a	function		makePoem()		that	returns	a	multi-line	string
representing	a	complete	poem.	The	main	section	of	the	code	should	simply	print
	makePoem()		to	display	a	single	poem.	In	order	to	get	there,	use	the	following	steps	as	a
guide:

1.	 First,	you'll	need	a	vocabulary	from	which	to	create	the	poem.	Create	several	lists,
each	containing	words	pertaining	to	one	part	of	speech	(more	or	less);	i.e.,	create
separate	lists	for	nouns,	verbs,	adjectives,	adverbs,	and	prepositions.	You	will	need
to	include	at	least	three	different	nouns,	three	verbs,	three	adjectives,	two
prepositions	and	one	adverb.	You	can	use	the	sample	word	lists	below,	but	feel	free
to	add	your	own:

Nouns:	"fossil",	"horse",	"aardvark",	"judge",	"chef",	"mango",	"extrovert",
"gorilla"
Verbs:	"kicks",	"jingles",	"bounces",	"slurps",	"meows",	"explodes",	"curdles"
Adjectives:	"furry",	"balding",	"incredulous",	"fragrant",	"exuberant",	"glistening"
Prepositions:	"against",	"after",	"into",	"beneath",	"upon",	"for",	"in",	"like",	"over",
"within"
Adverbs:	"curiously",	"extravagantly",	"tantalizingly",	"furiously",	"sensuously"

Real	Python	Part	1:	Introduction	to	Python

102Assignment:	Wax	poetic

https://en.wikipedia.org/wiki/Clifford_A._Pickover

2.	 Choose	random	words	from	the	appropriate	list	using	the		random.choice()		function,
storing	each	choice	in	a	new	string.	Select	three	nouns,	three	verbs,	three
adjectives,	one	adverb,	and	two	prepositions.	Make	sure	that	none	of	the	words	are
repeated.	(Hint:	Use	a	while	loop	to	repeat	the	selection	process	until	you	get	a	new
word.)

3.	 Plug	the	words	you	selected	into	the	structure	above	to	create	a	poem	string	by
using	the		format()		string	method

4.	 Bonus:	Make	sure	that	the	"A"	in	the	title	and	the	first	line	is	adjusted	to	become	an
"An"	automatically	if	the	first	adjective	begins	with	a	vowel.

Real	Python	Part	1:	Introduction	to	Python

103Assignment:	Wax	poetic

Make	Permanent	Lists
Tuples	are	very	close	cousins	of	the	list	object.	The	only	real	difference	between	lists
and	tuples	is	that	tuple	objects	are	immutable	-	they	can't	be	changed	at	all	once	they
have	been	created.	Tuples	can	hold	any	list	of	objects,	and	they	even	look	nearly
identical	to	lists,	except	that	we	use	parentheses	instead	of	square	brackets	to	create
them:

>>>	my_tuple	=	("you'll",	"never",	"change",	"me")

>>>	print(my_tuple)

("you'll",	'never',	'change',	'me')

>>>

Since	tuples	are	immutable,	they	don't	have	methods	like		append()		and		sort()	.
However,	we	can	reference	the	objects	in	tuples	using	index	numbers	in	the	same	way
as	we	did	with	lists:

>>>	my_tuple[2]

'change'

>>>	my_tuple.index("me")

3

>>>

You	probably	won't	create	your	own	tuples	very	frequently,	although	we'll	see	some
instances	later	on	when	they	become	necessary.	One	place	where	we	tend	to	see	tuples
is	when	a	function	returns	multiple	values;	in	this	case,	we	wouldn't	want	to	accidentally
change	anything	about	those	values	or	their	ordering,	so	the	function	provides	them	to
us	as	a	"permanent"	list:

Real	Python	Part	1:	Introduction	to	Python

104Make	Permanent	Lists

>>>	def	adder_subtractor(num1,	num2):

...					add	=	num1	+	num2

...					subtract	=	num1	-	num2

...					return	add,	subtract

...

>>>	adder_subtractor(3,	2)

(5,	1)

>>>	test	=	adder_subtractor(4,	3)

>>>	test

(7,	1)

>>>	type(test)

<type	'tuple'>

>>>

Parentheses	are	actually	optional	when	we	are	creating	a	tuple;	we	can	also	just	list	out
a	set	of	objects	to	assign	to	a	new	object,	and	Python	will	assume	by	default	that	we
mean	to	create	a	tuple:

>>>	coordinates	=	4.21,	9.29

>>>	print	coordinates

(4.21,	9.29)

>>>

This	process	is	called	tuple	packing	because	we	are	"packing"	a	number	of	objects	into
a	single	immutable	tuple	object.	If	we	were	to	receive	the	above	coordinates	tuple	from	a
function	and	we	then	want	to	retrieve	the	individual	values	from	this	tuple,	we	can
perform	the	reverse	process,	suitably	called	tuple	unpacking:

>>>	x,	y	=	coordinates

>>>	print(x)

4.21

>>>	print(y)

9.29

>>>

We	assigned	both	new	variables	to	the	tuple	coordinates,	separating	the	names	with
commas,	and	Python	automatically	knew	how	to	hand	out	the	items	in	the	tuple.	In	fact,
we	can	always	make	multiple	assignments	in	a	single	line	by	separating	the	names	with
commas,	whether	or	not	we	use	a	tuple:

Real	Python	Part	1:	Introduction	to	Python

105Make	Permanent	Lists

>>>	str1,	str2,	str3	=	"a",	"b",	"c"

>>>	print(str1)

a

>>>	print(str2)

b

>>>	print(str3)

c

>>>

This	works	because	Python	is	basically	doing	tuple	packing	and	tuple	unpacking	on	its
own	in	the	background.	However,	we	don't	use	this	very	frequently	because	it	usually
only	makes	code	harder	to	read	and	more	difficult	to	update	when	changes	are	needed.

Review	exercises:

1.	 Create	a	tuple	named		cardinal_nums		that	holds	the	strings	"first",	"second"	and
"third"	in	order

2.	 Display	the	string	at	position	2	in		cardinal_nums		by	using	an	index	number
3.	 Copy	the	tuple	values	into	three	new	strings	named		pos1	,		pos2		and		pos3		in	a

single	line	of	code	by	using	tuple	unpacking,	then	print	those	string	values

Real	Python	Part	1:	Introduction	to	Python

106Make	Permanent	Lists

Store	Relationships	in	Dictionaries
One	of	the	most	useful	structures	in	Python	is	a	dictionary.	Like	lists	and	tuples,
dictionaries	are	used	as	a	way	to	store	a	collection	of	objects.	However,	the	order	of	the
objects	in	a	dictionary	is	unimportant.	Instead,	dictionaries	hold	information	in	pairs	of
data,	called	key-value	pairs.	Every	key	in	a	dictionary	is	associated	with	a	single	value.
Let's	take	a	look	at	an	example	in	which	we	create	a	dictionary	that	represents	entries	in
a	phonebook:

>>>	phonebook	=	{"Jenny":	"867-5309",	"Mike	Jones":	"281-330-8004",

"Destiny":	"900-783-3369"}

>>>	print(phonebook)

{'Mike	Jones':	'281-330-8004',	'Jenny':	'867-5309',

'Destiny':	'900-783-3369'}

>>>

The	keys	in	our	example	phonebook	are	names	of	people.	Keys	are	joined	to	their
values	with	colons,	where	each	value	is	a	phone	number.	The	key-value	pairs	are	each
separated	by	commas,	just	like	the	items	in	a	list	or	tuple.	While	lists	use	square
brackets	and	tuples	use	parentheses,	dictionaries	are	enclosed	in	curly	braces,	{}.	Just
as	with	empty	lists,	we	could	have	created	an	empty	dictionary	by	using	only	a	pair	of
curly	braces.

Notice	how,	when	we	displayed	the	contents	of	the	dictionary	we	had	just	created,	the
key-value	pairs	appeared	in	a	different	order.	Python	sorts	the	contents	of	the	dictionary
in	a	way	that	makes	it	very	fast	to	get	information	out	of	the	dictionary	(by	a	process
called	hashing),	but	this	ordering	changes	randomly	every	time	the	contents	of	the
dictionary	change.

Instead	of	the	order	of	the	items,	what	we	really	care	about	is	which	value	belongs	to
which	key.	This	is	a	very	natural	way	to	represent	many	different	types	of	information.
For	instance,	I	probably	don't	care	which	number	I	happen	to	put	into	my	phonebook
first;	I	only	want	to	know	which	number	belongs	to	which	person.	We	can	retrieve	this
information	the	same	way	as	we	did	with	lists,	using	square	brackets,	except	that	we
specify	a	key	instead	of	an	index	number:

>>>	phonebook["Jenny"]

'867-5309'

>>>

Real	Python	Part	1:	Introduction	to	Python

107Store	Relationships	in	Dictionaries

http://en.wikipedia.org/wiki/Hash_function

We	can	add	entries	to	a	dictionary	by	specifying	the	new	key	in	square	brackets	and
assigning	it	a	value:

>>>	phonebook["Obama"]	=	"202-456-1414"

>>>	print(phonebook)

{'Mike	Jones':	'281-330-8004',	'Obama':	'202-456-1414',

'Jenny':	'867-5309',	'Destiny':	'900-783-3369'}

>>>

We're	not	allowed	to	have	duplicate	keys	in	a	Python	dictionary;	in	other	words,	each
key	can	only	be	assigned	a	single	value.	This	is	because	having	duplicate	keys	would
make	it	impossible	to	identify	which	key	we	mean	when	we're	trying	to	find	the	key's
associated	value.	If	a	key	is	given	a	new	value,	Python	just	overwrites	the	old	value.	For
instance,	perhaps	Jenny	got	a	new	number:

>>>	phonebook["Jenny"]	=	"555-0199"

>>>	print(phonebook)

{'Mike	Jones':	'281-330-8004',	'Obama':	'202-456-1414',

'Jenny':	'555-0199',	'Destiny':	'900-783-3369'}

>>>

To	remove	an	individual	key-value	pair	from	a	dictionary,	we	use	the		del()		function
(short	for	delete):

>>>	del(phonebook["Destiny"])

>>>	print(phonebook)

{'Mike	Jones':	'281-330-8004',	'Obama':	'202-456-1414',

'Jenny':	'555-0199'}

>>>

Often	we	will	want	to	loop	over	all	of	the	keys	in	a	dictionary.	We	can	get	all	of	the	keys
out	of	a	dictionary	by	using	the		keys()		method:

>>>	print(phonebook.keys())

(['Mike	Jones',	'Jenny',	'Obama'])

>>>

They		keys()		method	returns	an	object	of	the	type		dict_keys	:

Real	Python	Part	1:	Introduction	to	Python

108Store	Relationships	in	Dictionaries

names	=	phonebook.keys()

>>>type(names)

<class	'dict_keys'>

>>>

This	can	be	a	problem	because		dict_keys		object	look	like		lists	,	but	they	are	not,	and
therefore	do	not	have	the	same	methods	available	to	them.	To	be	able	to	reference
these	keys	by	index	(as	well	as	use	other	list	methods	such	as	sort(),	sum(),	etc.)	we
need	to	convert	this	object	to	a	list	like	so:

>>>names	=	list(phonebook.keys())

>>>type(names)

<class	'list'>

It	we	wanted	to	do	something	specific	with	each	of	the	dictionary's	keys,	though,	what's
usually	even	easier	to	do	is	to	use	a	for	loop	to	get	each	key	individually.	Saying		for	x
in	dictionary		automatically	gives	us	each	key	in	the	dictionary.	We	can	then	use	the
variable	name	in	our	for	loop	to	get	each	corresponding	value	out	of	our	dictionary:

>>>

for	contact_name	in	phonebook:

				print(contact_name,	phonebook[contact_name])

Mike	Jones	281-330-8004

Jenny	555-0199

Obama	202-456-1414

>>>

We	can	also	use	the		in		keyword	to	check	whether	or	not	a	particular	key	exists	in	a
dictionary:

>>>	"Jenny"	in	phonebook

True

>>>	"Santa"	in	phonebook

False

>>>

This	expression	(x	in	dictionary)	is	usually	used	in	an		if		statement,	for	instance
before	deciding	whether	or	not	to	try	to	get	the	corresponding	value	for	that	key.	This	is
important	because	it's	an	error	to	attempt	to	get	a	value	for	a	key	that	doesn't	exist	in	a
dictionary:

Real	Python	Part	1:	Introduction	to	Python

109Store	Relationships	in	Dictionaries

>>>	phonebook["Santa"]

Traceback	(most	recent	call	last):

		File	"<pyshell#1>",	line	1,

in	<module>

				phonebook["Santa"]

KeyError:	'Santa'

>>>

If	we	do	want	to	access	a	dictionary's	keys	in	their	sorted	order,	we	can	use	Python's
	sorted()		function	to	loop	over	the	keys	alphabetically:

>>>

for	contact_name	in	sorted(phonebook):

				print(contact_name,	phonebook[contact_name])

Jenny	555-0199

Mike	Jones	281-330-8004

Obama	202-456-1414

>>>

Keep	in	mind	that		sorted()		doesn't	re-sort	the	order	of	the	actual	dictionary:

>>>	for	contact_name	in	sorted(phonebook):

...					print(contact_name,	phonebook[contact_name])

...

Jenny	555-0199

Mike	Jones	281-330-8004

Obama	202-456-1414

>>>	phonebook

{'Mike	Jones':	'281-330-8004',	'Jenny':	'555-0199',

'Obama':	'202-456-1414'}

The	change	is	temporary.	Python	has	to	keep	the	apparently	haphazard	ordering	of	keys
in	the	dictionary	in	order	to	be	able	to	access	the	dictionary	keys	quickly	using	its	own
complicated	hash	function.

Dictionaries	are	very	flexible	and	can	hold	a	wide	variety	of	information	beyond	the
strings	that	we've	experimented	with	here.	Although	it's	usually	the	case,	dictionaries
don't	even	have	to	hold	keys	or	values	that	are	all	the	same	types	of	objects.	Dictionary
values	can	be	anything,	while	keys	must	be	immutable	objects.	For	instance,	we	could
have	added	a	key	to	our	phonebook	that	was	an	integer	object.	However,	we	couldn't
have	added	a	list	as	a	key,	since	that	list	could	be	modified	while	it's	in	the	dictionary,
breaking	the	overall	structure	of	the	dictionary.

Real	Python	Part	1:	Introduction	to	Python

110Store	Relationships	in	Dictionaries

https://en.wikipedia.org/wiki/Hash_function

Dictionary	values	can	even	be	other	dictionaries,	which	is	more	common	than	it	probably
sounds.	For	instance,	we	could	imagine	a	more	complicated	phonebook	in	which	every
key	is	a	unique	contact	name	that	is	associated	with	a	dictionary	of	its	own;	these
individual	contact	dictionaries	could	then	include	keys	describing	the	phone	number
("home",	"work",	custom	supplied	type,	etc.)	that	are	each	associated	with	a	"phone
number"	value.	This	is	much	like	creating	a	list	of	lists:

>>>	contacts	=	{"Jenny":	{"cell":	"555-0199",	"home":	"867-5309"},	"Mike

Jones":	{"home":	"281-330-8004"},	"Destiny":	{"work":	"900-783-3369"}}

>>>	print(contacts)

{'Mike	Jones':	{'home':	'281-330-8004'},

'Jenny':	{'cell':	'555-0199',	'home':

'867-5309'},	'Destiny':	{'work':	'900-783-3369'}}

>>>	print(contacts["Jenny"])

{'cell':	'555-0199',	'home':	'867-5309'}

>>>	print(contacts["Jenny"]["cell"])

555-0199

>>>

When	we	wanted	to	retrieve	a	specific	value	inside	the	dictionary-value	associated	with
the	key	for	Jenny,	we	had	to	say		contacts["Jenny"]["cell"]	.	This	is	because	saying
	contacts["Jenny"]		now	returns	the	dictionary	of	all	numbers	for	Jenny,	from	which	we
have	to	specify	a	key	for	a	specific	type	of	phone	number.

Finally,	there	are	two	alternative	ways	to	create	dictionaries	that	can	come	in	useful	in
certain	specific	contexts.	You	shouldn't	worry	about	learning	the	details	of	how	to	use
them	right	now,	but	just	be	aware	that	they	are	a	possibility.

When	you	want	to	use	keys	that	are	strings	that	only	include	letters	and	numbers	(i.e.,
strings	that	could	stand	for	variable	names),	you	can	use		dict()		to	create	a	dictionary
like	so:

>>>	simple_dict	=	dict(string1="value1",	string2=2,	string3=3.0)

>>>	print(simple_dict)

{'string2':	2,	'string3':	3.0,	'string1':	'value1'}

>>>

Here	we	created	a	new	dictionary	named		simple_dict		that	has	three	string	keys,	but
without	putting	quotes	around	the	key	names	this	time	because	Python	knows	to	expect
strings	when	we	use		dict()		in	this	way.	We'll	see	an	example	of	this	use	of	dict()	later
in	the	course.

Real	Python	Part	1:	Introduction	to	Python

111Store	Relationships	in	Dictionaries

The	second	way	to	use		dict()		involves	providing	a	list	of	key-value	pairs	represented
as	tuples,	like	so:

>>>	simple_dict	=	dict([("string1","value1"),	("string2",2),

("string3",3.0)])

>>>	print(simple_dict)

{'string2':	2,	'string3':	3.0,	'string1':	'value1'}

>>>

Within		dict()	,	we	include	a	list	(the	square	brackets),	and	separated	by	commas	inside
that	list	are	tuples	(in	the	pairs	of	parentheses)	that	hold	each	of	our	key-value	pairs.	In
this	case,	we	aren't	limited	to	simple	string	keys;	we	can	again	assign	any	sort	of	keys
we	want	as	long	as	they	are	all	the	same	type	of	object.

NOTE:	Keep	in	mind	that,	even	though	dictionaries	might	seem	more	complicated
to	use,	their	main	advantage	is	that	they	are	very	fast.	When	you're	working	with
long	lists	of	data,	repeatedly	cycling	through	an	entire	list	to	find	a	single	piece	of
information	can	take	a	long	time;	by	contrast,	looking	up	the	information
associated	with	a	dictionary	key	is	almost	instantaneous.	If	you	ever	find	yourself
wanting	to	create	multiple	lists	where	items	match	up	across	lists	based	on	their
ordering,	you	should	probably	be	using	a	dictionary	instead

Review	exercises:

1.	 Create	an	empty	dictionary	named		birthdays	
2.	 Enter	the	following	data	into	the	dictionary:

	'Luke	Skywalker':	'5/24/19'

	'Obi-Wan	Kenobi':	'3/11/57'

	'Darth	Vader':	'4/1/41'

3.	 Write		if		statements	that	test	to	check	if	'Yoda'	and	'Darth	Vader'	exist	as	keys	in
the	dictionary,	then	enter	each	of	them	with	birthday	value	'unknown'	if	their	name
does	not	exist	as	a	key

4.	 Display	all	the	key-value	pairs	in	the	dictionary,	one	per	line	with	a	space	between
the	name	and	the	birthday,	by	looping	over	the	dictionary's	keys

5.	 Delete	'Darth	Vader'	from	the	dictionary
6.	 Bonus:	Make	the	same	dictionary	by	using		dict()		and	passing	in	the	initial	values

when	you	first	create	the	dictionary

Real	Python	Part	1:	Introduction	to	Python

112Store	Relationships	in	Dictionaries

Real	Python	Part	1:	Introduction	to	Python

113Store	Relationships	in	Dictionaries

Assignment:	Capital	city	loop
Review	your	state	capitals	along	with	dictionaries	and	while	loops!

First,	finish	filling	out	the	following	dictionary	with	the	remaining	states	and	their
associated	capitals	in	a	file	called	capitals.py.	Or	you	can	grab	the	finished	file	directly
from	the	exercises	folder	in	the	course	repository	on	Github.

capitals_dict	=	{

				'Alabama':	'Montgomery',

				'Alaska':	'Juneau',

				'Arizona':	'Phoenix',

				'Arkansas':	'Little	Rock',

				'California':	'Sacramento',

				'Colorado':	'Denver',

				'Connecticut':	'Hartford',

				'Delaware':	'Dover',

				'Florida':	'Tallahassee',

				'Georgia':	'Atlanta',

}

Next,	write	a	script	that	imports	the		capitals_dict		variable	along	with	the	'random'
package:

from	capitals	import	capitals_dict

import	random

This	script	should	use	a	while	loop	to	iterate	through	the	dictionary	and	grab	a	random
state	and	capital,	assigning	each	to	a	variable.	The	user	is	then	asked	what	the	capital	of
the	randomly	picked	state	is.	The	loop	continues	forever,	asking	the	user	what	the
capital	is,	unless	the	user	either	answers	correctly	or	types	"exit".

If	the	user	answers	correctly,	"Correct"	is	displayed	after	the	loop	ends.	However,	if	the
user	exits	without	guessing	correctly,	the	answer	is	displayed	along	with	"Goodbye."

NOTE:	Make	sure	the	user	is	not	punished	for	case	sensitivity.	In	other	words,	a
guess	of	"Denver"	is	the	same	as	"denver".	The	same	rings	true	for	exiting	-
"EXIT"	and	"Exit"	are	the	same	as	"exit".

Name	this	file	capital_city_loop.py.

Real	Python	Part	1:	Introduction	to	Python

114Assignment:	Capital	city	loop

Real	Python	Part	1:	Introduction	to	Python

115Assignment:	Capital	city	loop

Assignment:	Cats	with	hats
You	have	100	cats.

One	day	you	decide	to	arrange	all	your	cats	in	a	giant	circle.	Initially,	none	of	your	cats
have	any	hats	on.	You	walk	around	the	circle	100	times,	always	starting	at	the	same
spot,	with	the	first	cat	(cat	#	1).	Every	time	you	stop	at	a	cat,	you	either	put	a	hat	on	it	if	it
doesn't	have	one	on,	or	you	take	its	hat	off	if	it	has	one	on.

1.	 The	first	round,	you	stop	at	every	cat,	placing	a	hat	on	each	one.
2.	 The	second	round,	you	only	stop	at	every	second	cat	(#2,	#4,	#6,	#8,	etc.).
3.	 The	third	round,	you	only	stop	at	every	third	cat	(#3,	#6,	#9,	#12,	etc.).
4.	 You	continue	this	process	until	you've	made	100	rounds	around	the	cats	(e.g.,	you

only	visit	the	100th	cat).

Write	a	program	that	simply	outputs	which	cats	have	hats	at	the	end.

NOTE:	This	is	not	an	easy	problem	by	any	means.	Honestly,	the	code	is	simple.
This	problem	is	often	seen	on	job	interviews	as	it	tests	your	ability	to	reason	your
way	through	a	difficult	problem.	Stay	calm.	Start	with	a	diagram,	and	then	write
pseudo	code.	Find	a	pattern.	Then	code!

Real	Python	Part	1:	Introduction	to	Python

116Assignment:	Cats	with	hats

Assignment:	Reviewing	the	fundamentals
Let's	review	functions,	loops,	lists,	dicts,	and	conditional	logic...

1.	 Copy	and	paste	the	code	below	to	IDLE	and	save	it	as	fundamental_review.py.
2.	 Run	the	file.	All		print		statements	in	Part	1	return		False		and	there	is	a		TypeError	

in	Part	2.
3.	 Modify	the	variables	so	that	all	of	the		print		statements	return		True	.

print	"\n#	--	part	1	--	#"

#	Modify	the	variable	value	so	that	all	of	the

#	`print`	statements	return	`True`.

zero	=	1

one	=	2

two	=	[5,	4,	3,	2,	1,	0]

three	=	"I	love	Python!"

four	=	[["P",	"y",	"t",	"h",	"o",	"n"],["i",	"s"],["h",	"a",	"r",	"d"]]

five	=	{"happy":"birthday"}

six	=	{1,	2,	3,	4,	5,	6,	7,	8,	9,	10}

days	=	("Fri",	"Sat",	"Sun")

x,	y,	seven	=	days

#	DO	NOT	CHANGE	ANYTHING	BELOW	THIS	LINE	#

#	--------------------------------------	#

print("zero:		{}".format(zero	==	0))

print("one:			{}".format(one	>	22))

print("two:			{}".format(len(two)	==	5))

print("three:	{}".format(three[2]	==	"Python!"))

print("four:		{}".format()

				four[0][5]	==	'n'	and	four[0][0]	==	"P"	and	four[2][1]	==	"u"

)

print("five:		{}".format(five.get("fish")	==	"chips"))

print("five:		{}".format(len(five)	==	3))

print("six:			{}".format(len(six	&	{2,5,7})	==	2))

print("seven:	{}".format(seven	==	"Wed"))

#	--------------------------------------	#

print("\n#	--	part	2	--	#")

#	Find	a	value	for	the	`value`	variable

#	so	that	all	print	statements	return	True.

value	=	None

Real	Python	Part	1:	Introduction	to	Python

117Assignment:	Reviewing	the	fundamentals

#	DO	NOT	CHANGE	ANYTHING	BELOW	THIS	LINE	#

#	------------------------------------	#

if	type(value)	is	list:

				print(True)

else:

				print(False)

for	x	in	value:

				if	not	type(x)	is	int:

								print(False)

				else:

								print(True)

num	=	0

while	num	<	value[2]:

				print(True)

				num	+=	1

for	y	in	range(value[3]):

				if	y	in	value:

								print(False)

try:

				value[5]	=	"Cat"

				while	True:

								print(False)

except	IndexError:

				print(True)

try:

				assert	value[3]	==	-1

except	AssertionError:

				print(True)

#	--------------------------------------	#

Real	Python	Part	1:	Introduction	to	Python

118Assignment:	Reviewing	the	fundamentals

Summary

You	should	use	lists	when:

1.	 You	have	a	mixed	collection	of	data,
2.	 The	data	needs	to	be	ordered,
3.	 The	data	may	need	to	be	changed	(lists	are	mutable),	and
4.	 You	need	a	stack	or	a	queue.

You	should	use	tuples	when:

1.	 The	data	won't	need	to	be	changed	(tuples	are	immutable),	and
2.	 Performance	is	an	issue.

You	should	use	dictionaries	when:

1.	 There	is	a	logical	association	between	a	key/value	pairs,
2.	 You	need	to	lookup	data	quickly	(via	keys),	and
3.	 The	data	may	need	to	be	changed	(dictionaries	are	mutable).

Real	Python	Part	1:	Introduction	to	Python

119Assignment:	Summary

File	Input	and	Output

Read	and	write	simple	files
So	far,	we've	allowed	the	user	to	type	input	into	our	program	and	displayed	output	on	the
screen.	But	what	if	we	want	to	work	with	a	lot	of	data?	It's	time	to	learn	how	to	use
Python	to	work	with	files.

To	read	or	write	"raw"	text	files	(i.e.,	the	sort	of	file	that	you	could	use	in	a	basic	text
editor	because	it	contains	no	formatting	or	extra	information),	we	use	the	general-
purpose		open()		function.	When	we		open()		a	file,	the	first	thing	we	have	to	determine
is	if	we	want	to	read	from	it	or	write	to	it.	Let's	start	by	creating	a	new	text	file	and	writing
some	data	into	it:

my_output_file	=	open("hello.txt",	"w")

We	passed	two	pieces	of	information	(called	arguments)	to	the		open()		function.	The
first	argument	was	a	string	that	represents	the	actual	name	of	the	file	we	want	to	create:
hello.txt.	The	second	argument	specifies	our	purpose	for	opening	the	file;	in	this	case,
we	said		w		because	we	want	to	write	to	the	file.

The		open()		function	returns	a	File	object	that	has	been	saved	in	the	variable
	my_output_file	.	Let's	write	a	line	of	text	into	the	file	with	the		writelines()		method.	Our
full	script	should	look	like	this:

my_output_file	=	open("hello.txt",	"w")

my_output_file.writelines("This	is	my	first	file.")

my_output_file.close()

Make	sure	you	know	where	you	are	saving	this	script	before	you	run	it;	since	we	didn't
specify	a	directory	path	for	the	file,	right	now	hello.txt	will	be	created	in	the	same	folder
as	the	script.

Real	Python	Part	1:	Introduction	to	Python

120File	Input	and	Output

NOTE:	You	should	always	use	the		close()		method	to	close	any	file	that	you
have		open()		once	you're	completely	done	with	the	file.	Python	will	eventually
close	any	open	files	when	you	exit	the	program,	but	not	closing	files	yourself	can
still	cause	surprising	problems.	This	is	because	Python	often	buffers	file	output,
meaning	that	it	might	save	a	bunch	of	commands	you've	written	(without	running
them	right	away),	then	run	them	all	in	a	big	batch	later	on	to	make	the	process	run
faster.	This	could	result	in	something	like	the	following	unwanted	situation:	you
write	output	to	a	file,	then	open	that	file	up	in	a	text	editor	to	view	the	output,	but
since	you	didn't		close()		the	file	in	Python	(and	IDLE	is	still	running),	the	file	is
completely	blank	even	though	Python	is	planning	to	write	output	to	the	file	before
it	is	closed.

After	running	this	script,	you	should	see	a	new	file	named	hello.txt	appear	in	the	same
folder	as	your	script;	open	the	output	file	up	yourself	to	check	that	it	contains	the	line	we
wrote.

The		writelines()		method	can	also	take	a	list	of	lines	to	be	written	all	at	once.	The
"lines"	will	be	written	one	after	the	other	without	a	new	line,	so	we	have	to	specify	the
special	newline	character		\n		if	we	actually	want	the	lines	to	appear	on	separate	lines.
Let's	modify	the	script	to	write	a	couple	lines	from	a	list:

my_output_file	=	open("hello.txt",	"w")

lines_to_write	=	["This	is	my	file.",	"\n	There	are	many	like	it,",

																"\nbut	this	one	is	mine."]

my_output_file.writelines(lines_to_write)

my_output_file.close()

Without	deleting	the	previous	hello.txt	file,	try	running	this	version	of	the	script,	then
check	the	contents	of	the	file.	This	is	an	important	lesson	that's	easy	to	forget:	As	soon
as	you		open()		a	file	in		w		(write)	mode,	if	the	file	already	exists	then	the	file's	current
contents	are	completely	deleted.	It's	a	common	mistake	to	accidentally	overwrite	or
delete	the	contents	of	an	important	file	this	way.

If	we	want	to	add	information	to	a	file	instead	of	overwriting	its	contents,	we	can	use	the
	a		mode	to	append	to	the	end	of	the	file.	The	rest	of	the	process	is	identical	to	writing	in
	w		mode;	the	only	difference	is	that	we	start	writing	at	the	end	of	the	file.	Again,	if	we
want	the	new	output	to	appear	on	a	new	line,	we	have	to	specify	the		\n		character	to
move	to	a	new	line.	Let's	append	one	additional	line	onto	our	current	file	hello.txt:

Real	Python	Part	1:	Introduction	to	Python

121File	Input	and	Output

my_output_file	=	open("hello.txt",	"a")

next_line	=	["\nNON	SEQUITUR"]

my_output_file.writelines(next_line)

my_output_file.close()

Now	that	we	have	a	file	written,	let's	read	the	data	from	it.	You	can	probably	guess	how
this	goes	by	now:

my_input_file	=	open("hello.txt",	"r")

print(my_input_file.readlines())

my_input_file.close()

This	time,	we	used	the		r		mode	to	read	input	from	the	file.	We	then	used	the
	readlines()		method	to	return	every	line	of	the	file,	which	are	displayed	like	so:

>>>

['This	is	my	file.\n',	'There	are	many	like	it,\n',	'but	this	one	is	mine.\n',	'NON	SEQUITUR']

>>>

The	output	is	returned	in	the	form	of	a	list,	and	all	of	the	line	breaks	were	visible	to	us	as
printed	newline	characters.	One	common	way	of	working	with	a	file	in	its	entirety	is	to
use	a		for		loop:

my_input_file	=	open("hello.txt",	"r")

for	line	in	my_input_file.readlines():

				print(line),

my_input_file.close()

NOTE:	Notice	how	we	ended	our		print		statement	with	a	comma;	this	is	because
any	print	statement	will	usually	add	a	new	line	to	the	end	of	the	line	of	output.	The
extra	comma	stops	the	print	statement	from	adding	this	automatic		\n		so	that	the
next	print	statement	will	continue	to	display	on	the	same	line.	Since	our	file
already	has	new	line	characters,	adding	extra	new	lines	would	have	made	the	file
output	display	incorrectly,	with	a	blank	line	appearing	in	between	each	actual	line
of	the	file.

Real	Python	Part	1:	Introduction	to	Python

122File	Input	and	Output

You	can	remove	the	automatic		\n		(or	change	it	to	something	different)	by	specifying
the	"end"	parameter	of	the		print()		function	like	so:

print(line,	end="")

We	supplied	empty	quotes	to	get	rid	of	the	line	break,	but	we	could	have	put,	for
instance,	an	extra	line	break	after	every	line	by	passing		end="\n\n"		to	the		print()	
function.

We	can	also	read	lines	from	the	file	one	at	a	time	using	the		readline()		method.	Python
will	keep	track	of	where	we	are	in	the	file	for	as	long	as	we	have	it	open,	returning	the
next	available	line	in	the	file	each	time		readline()		is	called:

my_input_file	=	open("hello.txt",	"r")

line	=	my_input_file.readline()

while	line	!=	"":

				print(line),

				line	=	my_input_file.readline()

my_input_file.close()

NOTE:	While	a	file	remains	open	in	read	mode,	Python	keeps	track	of	the	last	line
that	was	read.	So	calling		read()		twice	in	a	row	will	print	the	lines	the	first	time
and	print	an	empty	string	the	second	time.		readline()		and		readlines()		have
similar	behavior.	Once	a	file	is	closed,	the	'read'	position	is	reset.	Play	around	with
these	methods	in	IDLE	to	get	a	feel	for	the	differences.	As	well,	there	is	more	on
this	topic	below.

There	is	an	additional	shortcut	that	can	be	helpful	in	organizing	code	when	working	with
files:	using	Python's		with		keyword.	Using		with		to	read	our	file,	we	could	say:

with	open("hello.txt",	"r")	as	my_input_file:

				for	line	in	my_input_file.readlines():

								print(line),

Compare	this	code	carefully	to	the	two	previous	examples.	When	we	say	"with	X	as	Y"
we	are	defining	the	variable	Y	to	be	the	result	of	running	X.	This	begins	a	block	of	code
where	we	can	use	our	new	variable	as	usual	(in	this	case,		my_input_file).	The	added

Real	Python	Part	1:	Introduction	to	Python

123File	Input	and	Output

https://docs.python.org/2/reference/compound_stmts.html#the-with-statement

benefit	with	using	the		with		keyword	is	that	we	no	longer	have	to	worry	about	closing
the	file;	once	our	"with	block"	is	finished,	the	clean-up	work	(closing	of	the	file)	will	be
managed	for	us	automatically.

In	fact,	we	can	name	multiple	variables	in	a		with		statement	if	we	want	to	open	multiple
files	at	once.	For	instance,	if	we	wanted	to	read	hello.txt	in	and	write	its	contents	out	into
a	new	file	hi.txt	line-by-line,	we	could	simply	say:

with	open("hello.txt",	"r")	as	my_input,	open("hi.txt",	"w")	as	my_output:

				for	line	in	my_input.readlines():

								my_output.write(line)

Again,	this	will	take	care	of	all	the	clean-up	work	for	us,	closing	both	files	once	we	exit
the	block	of	code	inside	the		with		statement.	(Of	course,	practically	speaking	there's	an
easier	way	to	accomplish	this	particular	task;	the	shutil	module	includes	many	helpful
functions	including		copy()	,	which	can	be	used	to	copy	an	entire	file	into	a	new
location.)

The	rest	of	the	material	in	this	section	is	conceptually	more	complicated	and	usually	isn't
necessary	for	most	basic	file	reading/writing	tasks.	Feel	free	to	skim	this	remaining
material	for	now	and	come	back	to	it	if	you	ever	find	that	you	need	to	read	or	write	to	a
file	in	a	way	that	involve	specific	parts	of	lines	rather	than	taking	entire	lines	from	a	file
one	by	one.

If	we	want	to	visit	a	specific	part	of	the	file,	we	can	use	the		seek()		method	to	jump	a
particular	number	of	characters	into	the	file.	For	instance:

my_input_file	=	open("hello.txt",	"r")

print	"Line	0	(first	line):",	my_input_file.readline()

my_input_file.seek(0)	#	jump	back	to	beginning

print("Line	0	again:",	my_input_file.readline())

print("Line	1:",	my_input_file.readline())

my_input_file.seek(8)	#	jump	to	character	at	index	8

print("Line	0	(starting	at	9th	character):",	my_input_file.readline())

my_input_file.seek(10,	1)	#	relative	jump	forward	10	characters

print("Line	1	(starting	at	11th	character):",	my_input_file.readline())

my_input_file.close()

Real	Python	Part	1:	Introduction	to	Python

124File	Input	and	Output

http://docs.python.org/library/shutil.html

Run	this	script,	then	follow	along	with	the	output	as	you	read	the	description,	since	it's
not	the	most	intuitive	method	to	use.	When	we	provide	a	single	number	to		seek()	,	it	will
go	to	the	character	in	the	file	with	that	index	number,	regardless	of	where	we	currently
are	in	the	file.	Thus,		seek(0)		always	gets	us	back	to	the	beginning	of	the	file,	and
	seek(8)		will	always	place	us	at	the	character	at	index	position	8,	regardless	of	what	we
have	done	previously.	When	we	provide	a	second	argument	of	"1"	to		seek()	,	as	in	the
last	example,	we	are	moving	forward	(or	backward,	if	we	use	a	negative	number)	relative
to	where	we	currently	are	in	the	file.	In	this	case,	after	we	displayed	line	0	starting	at	its
9th	character,	we	were	currently	at	the	beginning	of	line	1.	Calling		seek(10,	1)		then
moved	us	10	characters	ahead	in	line	1.	Clearly,	this	sort	of	seeking	behavior	is	only
useful	in	very	specific	cases.

Although	it's	less	commonly	used,	it	is	possible	to	open	a	file	for	both	reading	and
writing.	You	may	have	already	guessed	why	this	is	usually	not	a	good	idea,	though;	it's
typically	very	difficult	to	keep	track	of	where	you	are	in	a	particular	file	using		seek()		in
order	to	decide	which	pieces	you	want	to	read	or	write.	We	can	specify	the	mode		r+		to
allow	for	both	reading	and	writing,	or		ra+		to	both	read	and	append	to	an	existing	file.
Since	writing	or	appending	will	change	the	characters	in	the	file,	however,	you	will	need
to	perform	a	new		seek()		whenever	switching	modes	from	writing	to	reading.

Review	exercises:

1.	 Read	in	the	raw	text	file	poem.txt	from	the	chapter	10	practice	files	and	display	each
line	by	looping	over	them	individually,	then	close	the	file;	we'll	discuss	using	file
paths	in	the	next	section,	but	for	now	you	can	save	your	script	in	the	same	folder	as
the	text	file

2.	 Repeat	the	previous	exercise	using	the		with		keyword	so	that	the	file	is	closed
automatically	after	you're	done	looping	through	the	lines

3.	 Write	a	text	file	output.txt	that	contains	the	same	lines	as	poem.txt	by	opening	both
files	at	the	same	time	(in	different	modes)	and	copying	the	original	file	over	line-by-
line;	do	this	using	a	loop	and	closing	both	files,	then	repeat	this	exercise	using	the
	with		keyword

4.	 Re-open	output.txt	and	append	an	additional	line	of	your	choice	to	the	end	of	the	file
on	a	new	line

Real	Python	Part	1:	Introduction	to	Python

125File	Input	and	Output

Use	More	Complicated	Folder	Structures
Chances	are	that	you	don't	want	to	limit	yourself	to	using	the	same	folder	as	your	script
for	all	your	files	all	the	time.	In	order	to	get	access	to	different	directories,	we	can	just
add	them	to	the	file	name	to	specify	a	full	path.	For	instance,	we	could	have	pointed	our
script	to	the	following	fictitious	path:

my_input_file	=	open("C:/My	Documents/useless	text	files/hello.txt",	"r")

Notice	how	we	used	only	forward	slashes	in	the	path	-	not	backslashes.	This	method	of
substituting	forward	slashes	works	fine	even	in	Windows,	where	the	operating	system's
default	is	to	use	backslashes	to	separate	directories.	We	do	this	to	avoid	the	"escape
character"	problem	where	Python	would	have	treated	a	backslash	and	the	character
following	it	as	a	pair	of	special	characters	instead	of	reading	them	along	with	the	rest	of
the	string	normally.	The	backslash	is	called	an	"escape	character"	because	it	lets	Python
know	that	the	backslash	and	the	character	following	it	should	be	read	as	a	pair	to
represent	a	different	character.	For	instance,		\n		would	be	interpreted	as	a	newline
character	and		\t		represents	a	"tab"	character.

Another	way	to	get	around	this	problem	is	to	put	a	lowercase		r		just	before	a	string,
without	a	space,	like	so:

myName	=	r"C:\My	Documents\useless	text	files\hello.txt"

This	creates	a	"raw"	string	that	is	read	in	exactly	as	it	is	typed,	meaning	that	backslashes
are	only	ever	read	as	actual	backslash	characters	and	won't	be	combined	with	any	other
characters	to	create	special	characters.

In	order	to	do	anything	more	advanced	with	file	structures,	we	need	to	rely	on	a	built-in
set	of	Python	code	called	the	os	module,	which	gives	us	access	to	various	functions
related	to	the	operating	system.	So	the	first	thing	that	we	will	need	to	do	is		import	os	
into	our	code.

If	you	are	used	to	working	in	the	command	line,	the	os	module	gives	you	much	of	the
same	basic	functionality	that	will	probably	already	be	somewhat	familiar	-	for	instance,
the		rmdir()		function	to	delete	a	directory	and	the		mkdir()		function	to	create	a	new
directory.

Real	Python	Part	1:	Introduction	to	Python

126Use	More	Complicated	Folder	Structures

http://en.wikipedia.org/wiki/Escape_character
https://docs.python.org/3.5/library/os.html

Soon	we'll	see	how	to	manipulate	and	interact	with	the	included	example	files	in	various
ways.	Although	there	are	a	number	of	different	ways	to	set	your	scripts	up	correctly	for
accessing	files,	for	simplicity	we	will	do	the	following:	whenever	we	need	to	write	a	script
that	makes	use	of	an	example	file	in	the	course	folder,	we	will	start	with	something	like
the	following	code:

import	os

my_path	=	"C:/Real	Python/Course	materials"

You	should	replace	the	string	that	gets	assigned	to	the	variable	path	with	a	string	that
actually	represents	the	location	at	which	you've	saved	the	main	course	materials	folder
(which	is	named	"Real	Python/Course	materials"	by	default,	but	might	not	be	saved
directly	onto	your	C:	drive).	This	way,	you	will	only	ever	have	to	specify	which	folders
inside	of	the	course	folder	you	want	to	access	instead	of	typing	it	out	each	time	you	want
to	access	a	sample	file.	We	will	then	join	this	path	to	the	rest	of	each	file	location	using
the		os.path.join()		function,	as	we'll	see	below.

For	instance,	if	you	wanted	to	display	the	full	contents	of	the	example	text	file	named
example.txt	in	the	chapter	9	practice	files	folder,	the	sample	code	would	look	like	the
following:

import	os

my_path	=	"C:/book1-exercises/chp09/practice_files"

input_file_name	=	os.path.join(my_path,	"example.txt")

with	open(input_file_name,	"r")	as	my_input_file:

				for	line	in	my_input_file.readlines():

								print(line),

Again,	the	string	on	the	second	line	that	represents	the	path	to	the	Practice	files	folder
might	need	to	be	changed	if	you	saved	the	course	files	in	a	different	location.

Notice	how	we	used		os.path.join()		as	a	way	of	adding	the	full	file	path	onto	the	main
directory	by	passing	the	two	parts	of	the	path	as	arguments	to	this	function.	This	just
combines	the	two	strings	together,	making	sure	that	the	right	number	of	slashes	is
included	in	between	the	two	parts.	Instead	of	using		os.path.join()	,	we	could	have
simply	added	(concatenated)	the	string	path	to	the	rest	of	the	file	path	by	using	a	plus
sign	and	adding	an	extra	forward	slash	between	the	two	strings	like	this:

Real	Python	Part	1:	Introduction	to	Python

127Use	More	Complicated	Folder	Structures

input_file_name	=	my_path	+	"/example.txt"

However,		os.path.join()		comes	with	the	added	benefit	of	Python	automatically	adding
any	slashes	between	the	two	path	strings	necessary	to	create	a	valid	path.	This	is	why
it's	a	good	idea	to	get	into	the	habit	of	using	this	function	to	join	path	names	together;
sometimes	we	will	retrieve	part	of	a	path	names	through	our	code	and	not	know	ahead
of	time	if	it	includes	an	extra	slash	or	not,	and	in	these	cases		os.path.join()		will	be	a
necessity.

NOTE:	If	you're	using	Python	3.4+,	you	also	have	the	option	to	work	with	object-
oriented	paths	using	pathlib.

Let's	start	modifying	files	using	a	basic	practical	example:	we	want	to	rename	every	.GIF
file	in	a	particular	folder	to	be	a	.JPG	file	of	the	same	name.	In	order	to	get	a	list	of	the
files	in	the	folder,	we	can	use	the		os.listdir()		function,	which	returns	a	list	of	file
names	found	in	the	provided	directory.	We	can	use	the	string	method		endswith()		to
check	the	file	extension	of	each	file	name.	Finally,	we'll	use		os.rename()		to	rename
each	file:

import	os

my_path	=	"C:/book1-exercises/chp09/practice_files/images"

#	get	a	list	of	all	files	and	folders

file_names_list	=	os.listdir(my_path)

#	loop	over	every	file	in	the	main	folder

for	file_name	in	file_names_list:

				if	file_name.lower().endswith(".gif"):	#	extension	matches	a	GIF	file

								print'Converting	"{}"	to	JPG...'.format(file_name)

								#	get	full	path	name	and	change	the	".gif"	to	".jpg"

								full_file_name	=	os.path.join(my_path,	file_name)

								new_file_name	=	full_file_name[0:len(full_file_name)-4]	+".jpg"

								os.rename(full_file_name,	new_file_name)

Since		endswith()		is	case-sensitive,	we	had	to	convert		file_name		to	lowercase	using
the		lower()		method;	since	this	method	returns	a	string	as	well,	we	just	stacked	one
method	on	top	of	another	in	the	same	line.	We	used	subscripting	to	replace	the	file
extension	in	the	line		new_file_name	=	full_file_name[0:len(full_file_name)-4]		by
trimming	the	last	four	characters	(the	".gif")	off	of	the	full	file	name,	then	we	added	the
new	".jpg"	extension	instead.	Our		os.rename()		function	took	two	arguments,	the	first
being	the	full	original	file	name	and	the	second	being	the	new	file	name.

Real	Python	Part	1:	Introduction	to	Python

128Use	More	Complicated	Folder	Structures

https://docs.python.org/3.5/library/pathlib.html

A	more	efficient	way	of	performing	this	same	task	would	be	to	import	and	use	the	glob
module,	which	serves	the	purpose	of	helping	to	match	patterns	in	file	names.	The
	glob.glob()		function	takes	a	string	that	uses	"wildcard"	characters,	then	returns	a	list	of
all	possible	matches.	In	this	case,	if	we	provide	the	file	name	pattern	"*.gif"	then	we	will
be	able	to	find	any	file	names	that	match	the	".gif"	extension	at	the	end:

import	glob

import	os

my_path	=	"C:/book1-exercises/chp09/practice_files/images"

possible_files	=	os.path.join(my_path,	"*.gif")

for	file_name	in	glob.glob(possible_files):

				print	'Converting	"{}"	to	JPG...'.format(file_name)

				full_file_name	=	os.path.join(my_path,	file_name)

				new_file_name	=	full_file_name[0:len(full_file_name)-4]	+".jpg"

				os.rename(full_file_name,	new_file_name)

By	providing	a	string	with	the	full	file	path	and	an		*	,	we	were	able	to	return	a	glob	list	of
all	possible	GIF	images	in	that	particular	directory.	We	can	also	use	glob()	to	search
through	subfolders	-	for	instance,	if	we	wanted	to	search	for	all	of	the	PNG	files	that	are
in	folders	inside	of	our	images	folder,	we	could	search	using	the	string	pattern:

import	glob

import	os

my_path	=	"C:/book1-exercises/chp09/practice_files/images"

possible_files	=	os.path.join(my_path,	"*/*.png")

for	file_name	in	glob.glob(possible_files):

				print(file_name)

Adding	the	string		"*/*.png"		to	the	path	means	that	we	are	searching	for	any	files
ending	in	".png"	that	are	inside	of	folders	that	can	have	any	name	(the	first	"*").	Since	we
used	the	forward	slash	to	separate	the	last	folder,	however,	we	will	only	be	searching	in
subfolders	of	the	"images"	directory.

Real	Python	Part	1:	Introduction	to	Python

129Use	More	Complicated	Folder	Structures

https://docs.python.org/3.5/library/glob.html

NOTE:	When	you	print	file	paths	generated	by	Python,	you	may	notice	that	some
of	them	include	backslashes.	In	fact,	Python	is	automatically	adding	two
backslashes	everywhere,	but	only	the	second	backslash	of	each	pair	is	displayed.
This	is	because	the	first	backslash	is	still	acting	as	an	"escape"	character,	then
the	second	backslash	tells	Python	that	we	do	in	fact	want	just	a	backslash
character.	We	could	also	have	specified	our	own	paths	this	way,	for	instance:
	my_path	=	"C:\\book1-exercises\\chp09\\practice_files\\images		displays	the
string	correctly	(try	it	out),	if	we	ever	use	the	string	in	a	way	that	causes	Python	to
reinterpret	each	of	the	backslashes	in	the	file	path	as	a	double	backslash,	we'll
end	up	with	an	invalid	path	full	of	doubled	double	backslashes.	This	is	why	it's	a
good	idea	to	stick	with	using	either	forward	slashes	or	"raw"	strings	for	path
names.

Another	special	pattern-matching	character	that	can	be	included	in	a	glob	pattern	is	a	 	̀
to	stand	for	any	one	single	character;	for	instance,	searching	for	anything	matching	

.gif	would	only	return	GIF	files	that	have	a	name	that	is	two	characters	long.	We	can
also	include	ranges	to	search	over	by	putting	them	in	square	brackets;	the	pattern	[0-
9]	will	match	any	single	number	from	0	through	9,	and	the	pattern	[a-z]	will	match	any
single	letter.	For	instance,	if	we	wanted	to	search	for	any	GIF	files	that	have	the

name	"image"	followed	specifically	by	two	digits,	we	could	pass	the	pattern	image[0-9]
[0-9].gif`	to	glob.

Keep	in	mind	that		listdir()		returns	a	list	of	all	files	and	folders	in	a	given	folder.
Therefore,	if	we	had	wanted	to	affect	every	file	in	the	image	folder,	then	we	would	want
to	be	careful	not	to	affect	folder	names	as	well.	We	can	check	this	easily	by	using	either
	os.path.isfile()		or		os.path.isdir()	,	both	of	which	return		True		or		False	.	For
instance,	if	we	wanted	to	add	the	string	"folder"	to	the	end	of	each	folder	name	inside	the
images	folder	but	not	affect	any	of	the	files	in	images,	we	could	do	the	following:

import	os

my_path	=	"C:/book1-exercises/chp09/practice_files/images"

files_and_folders	=	os.listdir(my_path)

for	folder_name	in	files_and_folders:

				full_path	=	os.path.join(my_path,	folder_name)

				if	os.path.isdir(full_path):

								os.rename(full_path,	full_path	+	"	folder")

Real	Python	Part	1:	Introduction	to	Python

130Use	More	Complicated	Folder	Structures

To	rename	a	folder	(or	file),	we	simply	passed	the	original	full	path	string	and	the	new	full
path	string	to	the		os.rename()		function.	Here	we	used		os.path.isdir()		to	decide
whether		folder_name		is	actually	a	folder	or	not;	in	this	case	it's	either	a	valid	path	to	a
folder	or	a	valid	path	to	a	file,	but	passing	any	string	that	isn't	a	valid	folder	path	to
	os.path.isdir()		will	return		False	.	Another	related	function	that	can	be	especially
useful	for	deciding	whether	or	not	a	particular	file	needs	to	be	created	for	the	first	time	is
	os.path.exists()	,	which	returns		True		or		False		depending	on	whether	the	file	or
folder	specified	already	exists	or	not.

Sometimes	we	need	to	deal	with	more	complicated	folder	structures	-	for	instance,	if	we
wanted	to	get	all	the	files	in	all	subfolders	of	a	particular	folder.	For	this,	we	can	use
	os.walk()	.	This	function	will	return	all	the	possible	combinations	of	(folder,	subfolders,
file	names)	as	tuples	that	represent	the	paths	to	reach	every	file	anywhere	in	a	named
root	folder.	For	instance,	if	we	wanted	to	display	every	file	within	the	"images"	folder	and
any	of	its	subfolders,	we	could	do	the	following:

import	os

my_path	=	"C:/book1-exercises/chp09/practice_files/images"

for	current_folder,	subfolders,	file_names	in	os.walk(my_path):

				for	file_name	in	file_names:

								print(os.path.join(current_folder,	file_name))

The	call	to		os.walk()		created	an	object	that	Python	could	loop	over,	each	time
returning	a	different	tuple	that	includes	-	(1)	a	particular	folder,	(2)	a	list	of	the	subfolders
within	that	folder,	and	(3)	a	list	of	files	within	that	folder.	We	used	tuple	unpacking	in	the
outer		for		loop	in	order	to	get	every	possible	combination	of	(current_folder,	subfolders,
file_names)	to	loop	over,	where		current_folder		might	actually	represent	the	images
folder	or	a	subfolder	of	images.	In	this	case,	we	don't	care	about	any	of	the	results	from
subfolders	since	looping	through	each	of	the		file_names		and	joining	them	to
	current_folder		will	give	us	the	full	path	to	every	file.

Although	we've	covered	the	most	common	cases,	there	are	many	additional	functions
belonging	to	both	the	os	module	and	the	os.path	module	that	can	be	used	in	various
ways	for	accessing	and	modifying	files	and	folders.	In	the	assignment	below,	we'll
practice	a	couple	more	of	these	functions:	deleting	files	and	folders	by	passing	them	to
the		os.remove()		function	and	getting	the	size	of	a	file	in	bytes	by	passing	it	to	the
	os.path.getsize()		function.

Real	Python	Part	1:	Introduction	to	Python

131Use	More	Complicated	Folder	Structures

https://docs.python.org/3.5/library/os.html#files-and-directories
https://docs.python.org/3.5/library/os.path.html

Review	exercises:

1.	 Display	the	full	paths	of	all	of	the	files	and	folders	in	the	images	folder	by	using
	os.listdir()	

2.	 Display	the	full	paths	of	any	PNG	files	in	the	images	folder	by	using		glob.glob()	
3.	 Rename	any	PNG	files	in	the	images	folder	and	its	subfolders	to	be	JPG	files	by

using		os.walk()	;	in	case	you	mess	things	up	beyond	repair,	there	is	a	copy	of	the
images	folder	in	the	backup	folder

4.	 Make	sure	that	your	last	script	worked	by	using		os.path.exists()		to	check	that	the
JPG	files	now	exist	(by	providing		os.path.exists()		with	the	full	path	to	each	of
these	files)

Real	Python	Part	1:	Introduction	to	Python

132Use	More	Complicated	Folder	Structures

Assignment:	Use	pattern	matching	to	delete
files
Write	a	script	remove_files.py	that	will	look	in	the	chapter	9	practice	files	folder	named
"little	pics"	as	well	all	of	its	subfolders.	The	script	should	use		os.remove()		to	delete	any
JPG	file	found	in	any	of	these	folders	if	the	file	is	less	than	2	Kb	(2,000	bytes)	in	size.

You	can	supply	the		os.path.getsize()		function	with	a	full	file	path	to	return	the	file's
size	in	bytes.	Check	the	contents	of	the	folders	before	running	your	script	to	make	sure
that	you	delete	the	correct	files;	you	should	only	end	up	removing	the	files	named	"to	be
deleted.jpg"	and	"definitely	has	to	go.jpg"	-	although	you	should	only	use	the	file
extensions	and	file	sizes	to	determine	this.

If	you	mess	up	and	delete	the	wrong	files,	there	is	a	folder	named	"backup"	that	contains
an	exact	copy	of	the	"little	pics"	folder	and	all	its	contents	so	that	you	can	copy	these
contents	back	and	try	again.

Real	Python	Part	1:	Introduction	to	Python

133Assignment:	Use	pattern	matching	to	delete	files

Read	and	Write	CSV	Data
The	types	of	files	we	have	to	deal	with	in	our	everyday	lives	are	usually	more
complicated	than	plain	text	files.	If	we	want	to	be	able	to	modify	the	contents	of	these
files	(rather	than	just	copy,	rename	or	delete	them),	we	will	need	more	complex	systems
for	being	able	to	read	this	information.

One	common	way	of	storing	text	data	is	in	CSV	files.	"CSV"	stands	for	Comma-
Separated	Value,	because	each	entry	in	a	row	of	data	is	usually	separated	from	other
entries	by	a	comma.	For	example,	the	contents	of	the	file	named	wonka.csv	in	the
chapter	9	practice	materials	folder	look	like	this:

First	name,Last	name,Reward

Charlie,Bucket,"golden	ticket,	chocolate	factory"

Veruca,Salt,squirrel	revolution

Violet,Beauregarde,fruit	chew

We	have	three	columns	of	variables:	First	name,	Last	name,	and	Reward.	Each	line
represents	another	row	of	data,	including	the	first	row,	which	is	a	"header"	row	that	tells
us	what	each	entry	represents.	Our	entries	have	to	appear	in	the	same	order	for	each
row,	with	each	entry	separated	from	others	by	commas.	Notice	how	"golden	ticket,
chocolate	factory"	is	in	quotes	-	this	is	because	it	contains	a	comma,	but	this	comma
isn't	meant	to	separate	one	entry	from	another.	There	is	no	set	standard	for	how	to	write
out	CSV	files,	but	this	particular	file	was	created	with	Microsoft	Excel,	which	added	the
quotation	marks	around	the	entry	containing	a	comma.

NOTE:	If	you	open	the	wonka.csv	practice	file,	it	will	most	likely	be	opened
automatically	by	Excel,	OpenOffice	Calc,	LibreOffice	Calc,	or	a	similar	program;
all	of	these	programs	have	the	ability	to	read	and	write	CSV	data,	which	is	one
reason	why	this	format	is	so	useful.	As	long	as	you	don't	need	to	track
characteristics	of	a	data	file	such	as	formatting	and	colors,	it's	usually	easiest	to
export	data	to	a	CSV	file	before	working	with	the	data	in	Python;	the	CSV	can
always	be	opened	in	the	appropriate	program	and	re-saved	as	the	proper	format
again	later.	CSV	files	can	also	be	useful	for	importing	or	exporting	data	from
systems	such	as	SQL	databases	that	we	will	learn	about	later.

Real	Python	Part	1:	Introduction	to	Python

134Read	and	Write	CSV	Data

Python	has	a	built-in	csv	module	that	makes	it	nearly	as	easy	to	read	and	write	CSV	files
as	any	other	sort	of	text	file.	Let's	start	with	a	basic	example	and	read	in	our	wonka.csv
file,	then	display	its	contents:

import	csv

import	os

my_path	=	"C:/book1-exercises/chp09/practice_files"

with	open(os.path.join(my_path,	"wonka.csv"),	"r")	as	my_file:

				my_file_reader	=	csv.reader(my_file)

				for	row	in	my_file_reader:

								print(row)

We	opened	a	file	just	as	we've	done	before.	We	then	created	a	CSV	file	reader	using
	csv.reader()		and	passed	it	the	file.	Notice	that	we	had	to	pass	the	actual	opened	file
object	to		csv.reader()	,	not	just	the	file	name.	From	there,	we	can	easily	loop	over	the
rows	of	data	in	this	CSV	reader	object,	which	are	each	displayed	as	a	list	of	strings:

>>>

['First	name',	'Last	name',	'Reward']

['Charlie',	'Bucket',	'golden	ticket,	chocolate	factory']

['Veruca',	'Salt',	'squirrel	revolution']

['Violet',	'Beauregarde',	'fruit	chew']

>>>

Much	like	with		readline()		versus		readlines()	,	there	is	also	a		next()		method	that
gets	only	the	next	row	of	data	from	a	CSV	reader	object.	This	method	is	usually	used	as
a	simple	method	of	skipping	over	a	row	of	"header"	data;	for	instance,	if	we	wanted	to
read	in	and	store	all	the	information	except	the	first	line	of	our	CSV	file,	we	could	add	the
line		next(my_file_reader)		after	opening	the	CSV	file	to	skip	over	the	first	line,	then	loop
through	the	remaining	rows	as	usual.

If	we	know	what	fields	to	expect	from	the	CSV	ahead	of	time,	we	can	even	unpack	them
from	each	row	into	new	variables	in	a	single	step:

Real	Python	Part	1:	Introduction	to	Python

135Read	and	Write	CSV	Data

https://docs.python.org/3.5/library/csv.html

import	csv

import	os

my_path	=	"book1-exercises/chp09/practice_files"

with	open(os.path.join(my_path,	"wonka.csv"),	"r")	as	my_file:

				my_file_reader	=	csv.reader(my_file)

				next(my_file_reader)

				for	first_name,	last_name,	reward	in	my_file_reader:

								print("{}	{}	got:	{}".format(first_name,	last_name,	reward))

After	skipping	the	first	header	row	with	the		next()		function,	we	assigned	the	three
values	in	each	row	to	the	three	separate	strings	first_name,	last_name	and	reward,
which	we	then	used	inside	of	the		for		loop,	generating	this	output:

>>>

['First	name',	'Last	name',	'Reward']

Charlie	Bucket	got:	golden	ticket,	chocolate	factory

Veruca	Salt	got:	squirrel	revolution

Violet	Beauregarde	got:	fruit	chew

>>>

The	first	line	of	this	output	was	generated	by	the	call	to	the		next()		function	rather	than
a	print	statement	of	ours.

The	commas	in	CSV	files	are	called	delimiters	because	they	are	the	character	used	to
separate	different	pieces	of	the	data.	Sometimes	a	CSV	file	will	use	a	different	character
as	a	delimiter,	especially	if	there	are	a	lot	of	commas	already	contained	in	the	data.	For
instance,	let's	read	in	the	file	tabbed	wonka.csv,	which	uses	tabs	instead	of	commas	to
separate	entries	and	looks	like	this:

First	name				Last	name				Reward

Charlie				Bucket				golden	ticket,	chocolate	factory

Veruca				Salt				squirrel	revolution

Violet				Beauregarde				fruit	chew

We	can	read	files	like	this	using	the	csv	module	just	as	easily	as	before,	but	we	need	to
specify	what	character	has	been	used	as	the	delimiter:

Real	Python	Part	1:	Introduction	to	Python

136Read	and	Write	CSV	Data

import	csv

import	os

my_path	=	"book1-exercises/chp09/practice_files"

with	open(os.path.join(my_path,	"tabbed	wonka.csv"),	"r")	as	my_file:

				my_file_reader	=	csv.reader(my_file,	delimiter="\t")

				next(my_file_reader)

				for	row	in	my_file_reader:

								print	row

Here	we	used	the	special	character		\t		to	mean	the	"tab"	character	and	assigned	it	to
the	argument	delimiter	when	we	created		my_file_reader	.

Writing	CSV	files	is	accomplished	using	the		csv.writer()		method	in	much	the	same
way.	Just	as	rows	of	data	read	from	CSV	files	appeared	as	lists	of	strings,	we	first	need
to	structure	the	rows	we	want	to	write	as	lists	of	strings:

import	csv

import	os

my_path	=	"book1-exercises/chp09/practice_files"

with	open(os.path.join(my_path,	"movies.csv"),	"w")	as	my_file:

				my_file_writer	=	csv.writer(my_file)

				my_file_writer.writerow(["Movie",	"Rating"])

				my_file_writer.writerow(["Rebel	Without	a	Cause",	"3"])

				my_file_writer.writerow(["Monty	Python's	Life	of	Brian",	"5"])

				my_file_writer.writerow(["Santa	Claus	Conquers	the	Martians",	"0"])

We	opened	a	new	file	in		w		mode	this	time	so	that	we	could	write	data.	We	then	wrote
out	individual	rows	to	the	CSV	file	writer	object	using	its		writerow()		method.	We	also
could	have	used	the		writerows()		method,	which	takes	a	list	of	rows,	to	write	all	the
rows	in	a	single	line:

Real	Python	Part	1:	Introduction	to	Python

137Read	and	Write	CSV	Data

import	csv

import	os

my_path	=	"book1-exercises/chp09/practice_files"

my_ratings	=	[["Movie",	"Rating"],

														["Rebel	Without	a	Cause",	"3"],

														["Monty	Python's	Life	of	Brian",	"5"],

														["Santa	Claus	Conquers	the	Martians",	"0"]]

with	open(os.path.join(my_path,	"movies.csv"),	"w")	as	my_file:

				my_file_writer	=	csv.writer(my_file)

				my_file_writer.writerows(my_ratings)

If	we	wanted	to	export	data	created	by	a	Python	script	to,	for	instance,	an	Excel
workbook	file,	although	it's	possible	to	do	this	directly,	it's	usually	sufficient	and	much
easier	to	create	a	CSV	file	that	we	can	then	open	later	in	Excel	and,	if	needed,	convert
to	the	desired	format.	There	are	a	number	of	special	modules	that	have	been	designed
for	interacting	with	Microsoft	Excel	documents	(although	they	all	have	their	own
limitations),	including	xlrd	and	xlwt	for	reading	and	writing	basic	Excel	files,	openpyxl	for
manipulating	Excel	2010	files,	and	XlsxWriter	for	creating	.xlsx	files	from	scratch.

Review	exercises:

1.	 Write	a	script	that	reads	in	the	data	from	the	CSV	file	pastimes.csv	located	in	the
chapter	9	practice	files	folder,	skipping	over	the	header	row

2.	 Display	each	row	of	data	(except	for	the	header	row)	as	a	list	of	strings
3.	 Add	code	to	your	script	to	determine	whether	or	not	the	second	entry	in	each	row

(the	"Favorite	Pastime")	converted	to	lower-case	includes	the	word	"fighting"	using
the	string	methods		find()		and		lower()	

4.	 Use	the	list		append()		method	to	add	a	third	column	of	data	to	each	row	that	takes
the	value	"Combat"	if	the	word	"fighting"	is	found	and	takes	the	value	"Other"	if
neither	word	appears

5.	 Write	out	a	new	CSV	file	categorized	pastimes.csv	to	the	Output	folder	with	the
updated	data	that	includes	a	new	header	row	with	the	fields	"Name",	"Favorite
Pastime",	and	"Type	of	Pastime"

Real	Python	Part	1:	Introduction	to	Python

138Read	and	Write	CSV	Data

http://www.python-excel.org/
http://pythonhosted.org/openpyxl/
https://xlsxwriter.readthedocs.org/en/latest/

Assignment:	Create	a	high	scores	list	from
CSV	data
Write	a	script	high_scores.py	that	will	read	in	a	CSV	file	of	users'	scores	and	display	the
highest	score	for	each	person.	The	file	you	will	read	in	is	named	scores.csv	and	is
located	in	the	chapter	9	practice	files	folder.	You	should	store	the	high	scores	as	values
in	a	dictionary	with	the	associated	names	as	dictionary	keys.	This	way,	as	you	read	in
each	row	of	data,	if	the	name	already	has	a	score	associated	with	it	in	the	dictionary,	you
can	compare	these	two	scores	and	decide	whether	or	not	to	replace	the	"current"	high
score	in	the	dictionary.

Use	the		sorted()		function	on	the	dictionary's	keys	in	order	to	display	an	ordered	list	of
high	scores,	which	should	match	this	output:

Empiro	23

L33tH4x	42

LLCoolDave	27

MaxxT	25

Misha46	25

O_O	22

johnsmith	30

red	12

tom123	26

Real	Python	Part	1:	Introduction	to	Python

139Assignment:	Create	a	high	scores	list	from	CSV	data

Assignment:	Split	a	CSV	file
Write	a	script	that	will	take	three	required	command	line	arguments	-		input_file	,
	output_file	,	and	the		row_limit	.	From	those	arguments,	split	the	input	CSV	into
multiple	files	based	on	the		row_limit		argument.

Arguments:

1.	 	-i	:	input	file	name
2.	 	-o	:	output	file	name
3.	 	-r	:	row	limit	to	split

Default	settings:

1.	 	output_path		is	the	current	directory
2.	 headers	are	displayed	on	each	split	file
3.	 the	default	delimiter	is	a	comma

Example	usage:

#	split	csv	by	every	100	rows

>>	python	csv_split.py	-i	input.csv	-o	output	-r	100

Before	you	start	coding,	stop	for	a	minute	and	read	over	the	directions	again.	If	you're
having	trouble	following	them,	take	some	notes.	What	makes	this	assignment	so	difficult
is	that	it	has	a	number	of	moving	pieces.	However,	if	you	can	break	them	down	into
manageable	chunks,	then	the	process	will	be	much	easier.	Let's	look	at	it	together.

1.	 You	first	need	to	grab	the	command	line	arguments.	I	recommend	using	the
argparse	library	for	this.	Once	obtained,	you	should	validate	the	arguments	to
ensure	that	(a)	the	input	file	exists	and	(b)	the	number	of	rows	in	the	input	file	is
greater	that	the	row	limit	to	split.	Make	sure	that	each	of	your	functions	does	only
one	thing.	Think	about	how	many	functions	you	need	for	this	first	step.

2.	 If	the	validation	passes,	the	program	should	continue.	If	not,	the	program	ends,
displaying	an	error	message.

3.	 Next	you	need	to	split	up	the	CSV	file	into	separate	"chunks"	based	on	the
	row_limit		argument.	In	other	words,	if	your	input	CSV	file	has	150	rows	(minus	the
header)	and	the		row_limit		is	set	to	50,	then	there	should	be	three	chunks	(and

Real	Python	Part	1:	Introduction	to	Python

140Assignment:	Split	a	CSV	file

https://docs.python.org/3.5/library/argparse.html

when	you	create	your	output	CSV	files,	each	chunk	will	have	50	rows	+	the	header).
There's	a	number	of	different	ways	to	create	each	chunk.	In	this	example,	it's
probably	easiest	to	create	a	separate		list		for	each	chunk	containing	the
appropriate	#	of	rows	from	the	input	CSV	file.

4.	 You	need	to	have	separate	output	files	(one	for	each	chunk)	that	have	some	sort	of
naming	convention	that	makes	sense.	You	could	use	a	timestamp.	Or	you	could
add	the	chunk	number	to	each	file	name	-	e.g.,	output-file-name_chunk-number.csv.
Each	file	must	have	a	.csv	extension	as	well	as	the	headers.	Add	each	chunk	to	the
appropriate	output	file.

5.	 Finally,	output	information	to	the	user	indicating	the	file	name	and	the	#	of	rows	for
each	chunk.	Format	this	in	an	appropriate,	legible	manner.

Try	this	out	on	your	own	before	looking	at	the	answer.	You	should	be	able	to	get	through
the	first	two	steps	on	your	own.	The	remaining	steps	are	a	bit	more	difficult.	If	you	found
this	assignment	easy,	try	to	add	additional	functionality	to	your	program,	such	as	the
ability	to	include	or	exclude	the	headers	from	each	file,	splitting	the	input	CSV	by	the
column	#	(or	name)	instead	of	by	row.

Need	help?	Here	are	some	recommendations	for	how	to	break	down	steps	3,	4,	and	5:

In	step	3,	you	should	open	the	CSV	file	and	create	a	list	of	lists	where	each	list	is	a	row
in	the	spreadsheet.	Remove	the	header	and	save	it,	since	you'll	need	to	add	it	to	each
chunk.	Use	a		for		loop	to	loop	through	the	list	of	lists	and	create	a	chunk	that	contains
the	rows	from	a	starting	row	#	to	an	ending	row	number.	The	ending	row	number	is	the
	row_limit	.	If	there	are	not	enough	rows	left	-	e.g.,	the	rows	remaining	is	less	than	the
`row_limit'	-	then	make	sure	to	add	all	remaining	rows	to	the	final	chunk.

Steps	4	and	5	are	best	kept	in	the	same		for		loop.	Create	a	new,	unique	output	file
name,	add	the	headers	to	each	chunk,	then	add	each	chunk	to	the	file.	Output	the
information	to	the	user.

Still	stuck?	Consult	Google.	Or	Stack	Overflow.

Real	Python	Part	1:	Introduction	to	Python

141Assignment:	Split	a	CSV	file

Interlude:	Install	Packages
The	remaining	half	of	this	course	relies	on	functionality	found	in	various	toolkits	that	are
not	packaged	with	Python	by	default.	There	are	over	71,000	of	these	"extra"	packages,
as	of	writing	(December	2015),	registered	with	Python	and	available	for	download.
Although	all	of	the	add-on	features	that	we'll	cover	are	widely	used	and	freely	available,
you	will	first	need	to	download	and	install	each	of	these	packages	in	order	to	be	able	to
import	new	functionality	into	your	own	code.

Python	"packages"	and	"toolkits"	are	usually	just	another	way	of	referring	to	a	module	or
set	of	modules	that	can	be	imported	into	other	Python	code,	although	sometimes	these
modules	rely	on	other	code	outside	of	Python,	which	is	why	it	can	sometimes	be	tricky	to
get	everything	installed	correctly.

Some	Python	packages	(especially	for	Windows)	offer	automated	installers	that	you	can
download	and	run	without	an	extra	hassle.

Usually	in	Linux,	installing	a	Python	package	is	only	a	matter	of	searching	for	the	correct
package	name	(e.g.,	in	the	Debian	package	directory),	then	running	the	command:

$	sudo	apt-get	python-package-name

Real	Python	Part	1:	Introduction	to	Python

142Interlude:	Install	Packages

http://pypi.python.org/pypi
https://www.debian.org/distrib/packages

Installing	via	pip
However,	eventually	you	will	come	across	a	Python	package	that	is	not	as	simple	to
install	for	your	particular	operating	system.	For	this	reason,	the	best	way	to	install	most
Python	packages	is	through	pip,	although	pip	itself	can	be	tricky	to	install	on	some
configurations.	If	you're	using	Python	3.4+,	you	already	have	pip	installed	by	default	and
can	use	it	right	away	to	install	new	packages	with	no	extra	hassle:

$	pip3	install	python-package-name

Real	Python	Part	1:	Introduction	to	Python

143Installing	via	pip

http://pip.readthedocs.org/en/latest/installing.html
https://docs.python.org/3.5/installing/

Installing	from	Source
Come	across	a	package	not	found	in	pip?	Most	packages	will	come	with	a	setup.py
script	that	will	help	you	to	install	them	into	Python.	If	this	is	the	case,	you	can	follow
these	steps	to	install	the	package:

Windows:

1.	 Download	the	.zip	file	for	the	package	and	unzip	it	into	a	folder	in	your	user	directory
(i.e.,		C:\Users\yourname)

2.	 Double-check	that	there	is	a	script	named	setup.py	in	the	package	folder
3.	 Open	up	a	command	prompt	(which	should	display		C:\Users\yourname>)	and	type

the	command	cd	followed	by	the	package	folder	name;	for	instance,	if	you	wanted	to
install	a	package	in	the	folder	named	"beautifulsoup4-4.1.0"	then	you	would	enter:
	cd	beautifulsoup4-4.1.0	

4.	 To	install	the	package,	enter	the	command:		python	setup.py	install	

Non-Windows:

1.	 Download	the	.tar.gz	file	for	the	package	and	decompress	it	into	a	folder	in	your
users	directory	(i.e.,	"/home/yourname")

2.	 Double-check	that	there	is	a	script	named	setup.py	in	the	package	folder
3.	 In	Terminal,	type	the	command	cd	followed	by	the	package	folder	name;	for

instance,	if	you	wanted	to	install	a	package	in	the	folder	named	"beautifulsoup4-
4.1.0"	then	you	would	enter:		cd	beautifulsoup4-4.1.0	

4.	 To	install	the	package,	enter	the	command:		sudo	python	setup.py	install	

If	all	else	fails,	you	can	always	download	(and	unzip)	the	entire	set	of	files	for	a	given
package	and	copy	its	folder	into	the	same	directory	as	the	script	where	it	is	used.	Since
the	package	files	will	be	in	the	same	current	location	as	the	script,	you	will	be	able	to	find
and	import	them	automatically.

Of	course,	there	are	a	number	of	problems	with	this	approach	-	mainly,	the	package	may
take	up	a	lot	of	memory	if	it's	large,	and	you'll	have	to	copy	the	entire	library	over	into	a
new	directory	every	time	you	write	a	script	in	a	new	folder.	If	it's	a	small	package	(and
the	license	allows	you	to	copy	the	entire	set	of	source	files),	however,	one	benefit	is	that
you	can	then	send	this	entire	folder,	complete	with	your	script	and	the	needed	library
files,	to	someone	else,	who	would	then	be	able	to	run	your	script	without	having	to	install

Real	Python	Part	1:	Introduction	to	Python

144Installing	from	Source

the	package	as	well.	Despite	this	minor	possible	convenience,	this	approach	should
usually	only	be	used	as	a	last-ditch	effort	if	all	other	proper	attempts	to	install	a	package
have	failed.

Real	Python	Part	1:	Introduction	to	Python

145Installing	from	Source

Interact	with	PDF	Files
PDF	files	have	become	a	sort	of	necessary	evil	these	days.	Despite	their	frequent	use,
PDFs	are	some	of	the	most	difficult	files	to	work	with	in	terms	of	making	modifications,
combining	files,	and	especially	for	extracting	text	information.

Fortunately,	there	are	a	few	options	in	Python	for	working	specifically	with	PDF	files.
None	of	these	options	are	perfect	solutions,	but	often	you	can	use	Python	to	completely
automate	or	at	least	ease	some	of	the	pain	of	performing	certain	tasks	using	PDFs.

The	most	frequently	used	package	for	working	with	PDF	files	in	Python	is	named
PyPDF2	and	can	be	found	here.	You	will	need	to	download	and	install	this	package
before	continuing	with	the	chapter.	In	you	terminal	or	command	line	type:

$	pip3	install	PyPDF2

If	that	doesn't	work,	you	will	need	to	download	and	unzip	the	.tar.gz	file	and	install	the
module	using	the	setup.py	script	as	explained	in	the	previous	chapter	on	installing
packages	from	source.

Debian/Linux:	Just	type	the	command:		sudo	apt-get	install	python-PyPDF2	

The	PyPDF2	package	includes	a	PdfFileReader	and	a	PdfFileWriter;	just	like	when
performing	other	types	of	file	input/output,	reading	and	writing	are	two	entirely	separate
processes.

First,	let's	get	started	by	reading	in	some	basic	information	from	a	sample	PDF	file,	the
first	couple	chapters	of	Jane	Austen's	Pride	and	Prejudice	via	Project	Gutenberg:

import	os

from	PyPDF2	import	PdfFileReader

path	=	"C:/book1-exercises/chp11/practice_files"

input_file_name	=	os.path.join(path,	"Pride	and	Prejudice.pdf")

input_file	=	PdfFileReader(open(input_file_name,	"rb"))

print("Number	of	pages:",	input_file.getNumPages())

print("Title:",	input_file.getDocumentInfo().title)

Real	Python	Part	1:	Introduction	to	Python

146Interact	with	PDF	files

https://pypi.python.org/pypi/PyPDF2/1.25.1
https://pypi.python.org/pypi/PyPDF2/1.25.1
http://www.gutenberg.org/ebooks/1342

NOTE:	Be	sure	to	update	the		path		variable	with	the	correct	path	for	you	system.

NOTE:	Because	we	are	reading	PDF	files,	we	must	use	the	argument	'rb'	with	the
	open()		method.

We	created	a	PdfFileReader	object	named		input_file		by	passing	a		file()		object
with		rb		(read	binary)	mode	and	giving	the	full	path	of	the	file.	The	additional	"binary"
part	is	necessary	for	reading	PDF	files	because	we	aren't	just	reading	basic	text	data.
PDFs	include	much	more	complicated	information,	and	saying	"rb"	here	instead	of	just
"r"	tells	Python	that	we	might	encounter	characters	that	can't	be	represented	as	standard
readable	text.

We	can	then	return	the	number	of	pages	included	in	the	PDF	input	file.	We	also	have
access	to	certain	attributes	through	the		getDocumentInfo()		method;	in	fact,	if	we	display
the	result	of	simply	calling	this	method,	we	will	see	a	dictionary	with	all	of	the	available
document	info:

>>>	print(input_file.getDocumentInfo())

{'/CreationDate':	u'D:20110812174208',	'/Author':	u'Chuck',	'/Producer':

u'MicrosoftÃ‚Â®	Office	Word	2007',	'/Creator':	u'MicrosoftÃ‚Â®	Office	Word	2007',

'/ModDate':	u'D:20110812174208',	'/Title':	u'Pride	and	Prejudice,	by	Jane

Austen'}

>>>

We	can	also	retrieve	individual	pages	from	the	PDF	document	using	the		getPage()	
method	and	specifying	the	index	number	of	the	page	(as	always,	starting	at	0).	However,
since	PDF	pages	include	much	more	than	simple	text,	displaying	the	text	data	on	a	PDF
page	is	more	involved.	Fortunately,	PyPDF2	has	made	the	process	of	parsing	out	text
somewhat	easier,	and	we	can	use	the		extractText()		method	on	each	page:

>>>	print(input_file.getPage(0).extractText())

		The	Project	Gutenberg	EBook	of	Pride	and	Prejudice,	by	Jane	Austen		This	eBook	is	for

restrictions	whatsoever.		You	may	copy	it,	give	it	away	or	re-use	it	under	the	terms	of	the	Project	Gutenberg	License	included	with	this	eBook	or	online	at	www.gutenberg.org

Title:	Pride	and	Prejudice		Author:	Jane	Austen		Release

Date:	August	26,	2008	[EBook	#1342]	[Last	updated:	August	11,	2011]		Language:

English		Character	set	encoding:	ASCII		***	START	OF	THIS	PROJECT	GUTENBERG

EBOOK	PRIDE	AND	PREJUDICE	***					Produced	by	Anonymous	Volunteers,	and	David

Widger							PRIDE	AND	PREJUDICE			By	Jane	Austen					Contents

>>>

Real	Python	Part	1:	Introduction	to	Python

147Interact	with	PDF	files

Formatting	standards	in	PDFs	are	inconsistent	at	best,	and	it's	usually	necessary	to	take
a	look	at	the	PDF	files	you	want	to	use	on	a	case-by-case	basis.	In	this	instance,	notice
how	we	don't	actually	see	newline	characters	in	the	output;	instead,	it	appears	that	new
lines	are	being	represented	as	multiple	spaces	in	the	text	extracted	by	PyPDF2.	We	can
use	this	knowledge	to	write	out	a	roughly	formatted	version	of	the	book	to	a	plain	text	file
(for	instance,	if	we	only	had	the	PDF	available	and	wanted	to	make	it	readable	on	an
untalented	(err	dumb)	mobile	device):

import	os

from	PyPDF2	import	PdfFileReader

path	=	"C:/book1-exercises/chp11/practice_files"

input_file_name	=	os.path.join(path,	"Pride	and	Prejudice.pdf")

input_file	=	PdfFileReader(file(input_file_name,	"rb"))

output_file_name	=	os.path.join(path,	"Output/Pride	and	Prejudice.txt")

output_file	=	open(output_file_name,	"w")

title	=	input_file.getDocumentInfo().title	#	get	the	file	title

total_pages	=	input_file.getNumPages()	#	get	the	total	page	count

output_file.write(title	+	"\n")

output_file.write("Number	of	pages:	{}\n\n".format(total_pages))

for	page_num	in	range(0,	total_pages):

				text	=	input_file.getPage(page_num).extractText()

				text	=	text.replace("		",	"\n")

				output_file.write(text)

output_file.close()

Since	we're	writing	out	basic	text,	we	chose	the	plain		w		mode	and	created	a	file
book.txt	in	the	"Output"	folder.	Meanwhile,	we	still	use		rb		mode	to	read	data	from	the
PDF	file	since,	before	we	can	extract	the	plain	text	from	each	page,	we	are	in	fact
reading	much	more	complicated	data.	We	loop	over	every	page	number	in	the	PDF	file,
extracting	the	text	from	that	page.	Since	we	know	that	new	lines	will	show	up	as
additional	spaces,	we	can	approximate	better	formatting	by	replacing	every	instance	of
double	spaces	("	")	with	a	newline	character.

Instead	of	extracting	text,	we	might	want	to	modify	the	PDF	file	itself,	saving	out	a	new
version	of	the	PDF.	We'll	see	more	examples	of	why	and	how	this	might	occur	in	the
next	section,	but	for	now	create	the	simplest	"modified"	file	by	saving	out	only	a	section

Real	Python	Part	1:	Introduction	to	Python

148Interact	with	PDF	files

of	the	original	file.	Here	we	copy	over	the	first	three	pages	of	the	PDF	(not	including	the
cover	page)	into	a	new	PDF	file:

import	os

from	PyPDF2	import	PdfFileReader,	PdfFileWriter

path	=	"C:/book1-exercises/chp11/practice_files"

input_file_name	=	os.path.join(path,	"Pride	and	Prejudice.pdf")

input_file	=	PdfFileReader(open(input_file_name,	"rb"))

output_PDF	=	PdfFileWriter()

for	page_num	in	range(1,	4):

				output_PDF.addPage(input_file.getPage(page_num))

output_file_name	=	os.path.join(path,	"Output/portion.pdf")

output_file	=	open(output_file_name,	"wb")

output_PDF.write(output_file)

output_file.close()

We	imported	both		PdfFileReader		and		PdfFileWriter		from		PyPDF2		so	that	we	can	write
out	a	PDF	file	of	our	own.		PdfFileWriter		doesn't	take	any	arguments,	which	might	be
surprising;	we	can	start	adding	PDF	pages	to	our		output_PDF		before	we've	specified
what	file	it	will	become.	However,	in	order	to	save	the	output	to	an	actual	PDF	file,	at	the
end	of	our	code	we	create	an		output_file		as	usual	and	then	call
	output_PDF.write(output_file)		in	order	to	write	the	PDF	contents	into	this	file.

Review	exercises:

1.	 Write	a	script	that	opens	the	file	named	The	Whistling	Gypsy.pdf	from	the	Chapter
11	practice	files,	then	displays	the	title,	author,	and	total	number	of	pages	in	the	file

2.	 Extract	the	full	contents	of	The	Whistling	Gypsy.pdf	into	a	.TXT	file
3.	 Save	a	new	version	of	The	Whistling	Gypsy.pdf	that	does	not	include	the	cover

page	into	the	"Output"	folder

Real	Python	Part	1:	Introduction	to	Python

149Interact	with	PDF	files

Manipulate	PDF	Files
Often	the	reason	we	want	to	modify	a	PDF	file	is	more	complicated	than	just	saving	a
portion	of	the	file.	We	might	want	to	rotate	some	pages,	crop	pages,	or	even	merge
information	from	different	pages	together.	When	manually	editing	the	files,	Adobe
Acrobat	isn't	a	practical	or	feasible	solution;	however,	we	can	automate	many	of	these
tasks	using	PyPDF2.

Let's	start	with	a	surprisingly	common	problem:	rotated	PDF	pages.	Go	ahead	and	open
up	the	file	ugly.pdf	in	the	"book1-exercises/chp11/practice_files/"	folder.	You'll	see	that
it's	a	lovely	PDF	file	of	Hans	Christian	Andersen's	The	Ugly	Duckling,	except	that	every
odd-numbered	page	is	rotated	counterclockwise	by	ninety	degrees.	This	is	simple
enough	to	correct	by	using	the	rotateClockwise()	method	on	every	other	PDF	page	and
specifying	the	number	of	degrees	to	rotate:

import	os

from	PyPDF2	import	PdfFileReader,	PdfFileWriter

path	=	"C:/book1-exercises/chp11/practice_files"

input_file_name	=	os.path.join(path,	"ugly.pdf")

input_file	=	PdfFileReader(open(input_file_name,	"rb"))

output_PDF	=	PdfFileWriter()

for	page_num	in	range(0,	input_file.getNumPages()):

				page	=	input_file.getPage(page_num)

				if	page_num	%	2	==	0:

								page.rotateClockwise(90)

				output_PDF.addPage(page)

output_file_name	=	os.path.join(path,	"Output/The	Conformed	Duckling.pdf")

output_file	=	open(output_file_name,	"wb")

output_PDF.write(output_file)

output_file.close()

Another	useful	feature	of	PyPDF2	is	the	ability	to	crop	pages,	which	in	turn	will	allow	us
to	split	up	PDF	pages	into	multiple	parts	or	save	out	partial	sections	of	pages.	For
instance,	open	up	the	file	half	and	half.pdf	from	the	chapter	11	practice	files	folder	to	see
an	example	of	where	this	might	be	useful.	This	time,	we	have	a	PDF	that's	presented	in
two	"frames"	per	page,	which	again	is	not	an	ideal	layout	in	many	situations.	In	order	to

Real	Python	Part	1:	Introduction	to	Python

150Manipulate	PDF	Files

split	these	pages	up,	we	will	have	to	refer	to	the	MediaBox	belonging	to	each	PDF	page,
which	is	a	rectangle	representing	the	boundaries	of	the	page.	Let's	take	a	look	at	the
MediaBox	of	a	PDF	page	in	the	interactive	window	to	get	an	idea	of	what	it	looks	like:

>>>	from	PyPDF2	import	PdfFileReader

>>>	input_file	=	PdfFileReader(open("C:/book1-exercises/chp11/practice_files/half	and	half.pdf"

>>>	page	=	input_file.getPage(0)

>>>	print(page.mediaBox)

RectangleObject([0,	0,	792,	612])

>>>

A	mediaBox	is	a	type	of	object	called	a		RectangleObject	.	Consequently,	we	can	get	the
coordinates	of	the	rectangle's	corners:

>>>	print(page.mediaBox.lowerLeft)

(0,	0)

>>>	print(page.mediaBox.lowerRight)

(792,	0)

>>>	print(page.mediaBox.upperRight)

(792,	612)

>>>	print(page.mediaBox.upperRight[0])

792.0

>>>	print(page.mediaBox.upperRight[1])

612.0

>>>

These	locations	are	returned	to	us	as	tuples	that	include	the	x	and	y	coordinate	pairs.
Notice	how	we	didn't	include	parentheses	anywhere	because		mediaBox		and	its	corners
are	unchangeable	attributes,	not	methods	of	the	PDF	page.

We	will	have	to	do	a	little	math	in	order	to	crop	each	of	our	PDF	pages.	Basically,	we
need	to	set	the	corners	of	each	half-page	so	that	we	crop	out	the	side	of	the	page	that
we	don't	want.	To	do	this,	we	divide	the	width	of	the	landscape	page	into	two	halves;	we
set	the	right	corner	of	the	left-side	page	to	be	half	of	the	total	width,	and	we	set	the	left
corner	of	the	right-side	page	to	start	halfway	across	the	width	of	the	page.

Since	we	have	to	crop	the	half-pages	in	order	to	write	them	out	to	our	new	PDF	file,	we
will	also	have	to	create	a	copy	of	each	page.	This	is	because	the	PDF	pages	are
mutable	objects;	if	we	change	something	about	a	page,	we	also	change	the	same	things
about	any	variable	that	references	that	object.	This	is	exactly	the	same	problem	that	we
ran	into	when	having	to	copy	an	entire	list	into	a	new	list	before	making	changes.	In	this

Real	Python	Part	1:	Introduction	to	Python

151Manipulate	PDF	Files

case,	we	import	the	built-in		copy		module,	which	creates	and	returns	a	copy	of	an	object
by	using	the		copy.copy()		function.	(In	fact,	this	function	works	just	as	well	for	making
copies	of	entire	lists	instead	of	the	shorthand	list2	=	list1[:]	notation.)

This	is	tricky	code,	so	take	a	while	to	work	through	it	and	play	with	different	variations	of
the	copying	and	cropping	to	make	sure	you	understand	the	underlying	math:

import	os

import	copy

from	PyPDF2	import	PdfFileReader,	PdfFileWriter

path	=	"C:/book1-exercises/chp11/practice_files"

input_file_name	=	os.path.join(path,	"half	and	half.pdf")

input_file	=	PdfFileReader(open(input_file_name,	"rb"))

output_PDF	=	PdfFileWriter()

for	page_num	in	range(0,	input_file.getNumPages()):

				page_left	=	input_file.getPage(page_num)

				page_right	=	copy.copy(page_left)

				upper_right	=	page_left.mediaBox.upperRight	#	get	original	page	corner

				#	crop	and	add	left-side	page

				page_left.mediaBox.upperRight	=	(upper_right[0]/2,	upper_right[1])

				output_PDF.addPage(page_left)

				#	crop	and	add	right-side	page

				page_right.mediaBox.upperLeft	=	(upper_right[0]/2,	upper_right[1])

				output_PDF.addPage(page_right)

output_file_name	=	os.path.join(path,	"Output/The	Little	Mermaid.pdf")

output_file	=	open(output_file_name,	"wb")

output_PDF.write(output_file)

output_file.close()

NOTE:	PDF	files	are	a	bit	unusual	in	how	they	save	page	orientation.	Depending
on	how	the	PDF	was	originally	created,	it	might	be	the	case	that	your	axes	are
switched	-	for	instance,	a	standard	"portrait"	document	that's	been	converted	into
a	landscape	PDF	might	have	the	x-axis	represented	vertically	while	the	y-axis	is
horizontal.	Likewise,	the	corners	would	all	be	rotated	by	90	degrees;	the	upper	left
corner	would	appear	on	the	upper	right	or	the	lower	left,	depending	on	the	file's
rotation.	Especially	if	you're	working	with	a	landscape	PDF	file,	it's	best	to	do
some	initial	testing	to	make	sure	that	you	are	using	the	correct	corners	and	axes.

Beyond	manipulating	an	already	existing	PDF,	we	can	also	add	our	own	information	by
merging	one	PDF	page	with	another.	For	instance,	perhaps	we	want	to	automatically
add	a	header	or	a	watermark	to	every	page	in	a	file.	I've	saved	an	image	with	a

Real	Python	Part	1:	Introduction	to	Python

152Manipulate	PDF	Files

transparent	background	into	a	one-page	PDF	file	for	this	purpose,	which	we	can	use	as
a	watermark,	combining	this	image	with	every	page	in	a	PDF	file	by	using	the
	mergePage()		method:

import	os

from	PyPDF2	import	PdfFileReader,	PdfFileWriter

path	=	"C:/book1-exercises/chp11/practice_files"

input_file_name	=	os.path.join(path,	"The	Emperor.pdf")

input_file	=	PdfFileReader(open(input_file_name,	"rb"))

output_PDF	=	PdfFileWriter()

watermark_file_name	=	os.path.join(path,	"top	secret.pdf")

watermark_file	=	PdfFileReader(file(watermark_file_name,	"rb"))

for	page_num	in	range(0,	input_file.getNumPages()):

				page	=	input_file.getPage(page_num)

				page.mergePage(watermark_file.getPage(0))	#	add	watermark	image

				output_PDF.addPage(page)

output_PDF.encrypt("good2Bking")	#	add	a	password	to	the	PDF	file

output_file_name	=	os.path.join(path,	"Output/New	Suit.pdf")

output_file	=	open(output_file_name,	"wb")

output_PDF.write(output_file)

output_file.close()

While	we	were	securing	the	file,	notice	that	we	also	added	basic	encryption	by	supplying
the	password	"good2Bking"	through	the	PdfFileWriter's		encrypt()		method.	If	you	know
the	password	used	to	protect	a	PDF	file,	there	is	also	a	matching		decrypt()		method	to
decrypt	an	input	file	that	is	password	protected;	this	can	be	incredibly	useful	as	an
automation	tool	if	you	have	many	identically	encrypted	PDFs	and	don't	want	to	have	to
type	out	a	password	each	time	you	open	one	of	the	files.

Review	exercises:

1.	 Write	a	script	that	opens	the	file	named	Walrus.pdf	from	the	Chapter	11	practice
files;	you	will	need	to	decrypt	the	file	using	the	password	"IamtheWalrus"

2.	 Rotate	every	page	in	this	input	file	counter-clockwise	by	90	degrees
3.	 Split	each	page	in	half	vertically,	such	that	every	column	appears	on	its	own

separate	page,	and	output	the	results	as	a	new	PDF	file	in	the	Output	folder

Real	Python	Part	1:	Introduction	to	Python

153Manipulate	PDF	Files

Real	Python	Part	1:	Introduction	to	Python

154Manipulate	PDF	Files

Assignment:	Add	a	cover	sheet	to	a	PDF	file
Write	a	script	cover_the_emperor.py	that	appends	the	chapter	11	practice	file	named
The	Emperor.pdf	to	the	end	of	the	chapter	11	practice	file	named	Emperor	cover
sheet.pdf	and	outputs	the	full	resulting	PDF	to	the	file	The	Covered	Emperor.pdf	in	the
chapter	11	practice	files	"Output"	folder.

Real	Python	Part	1:	Introduction	to	Python

155Assignment:	Add	a	cover	sheet	to	a	PDF	file

Create	PDF	Files
Although	PyPDF2	is	one	of	the	best	and	most	frequently	relied-upon	packages	for
interacting	with	PDFs	in	Python,	it	does	have	some	weaknesses.	For	instance,	there	is
no	way	to	generate	your	own	PDF	files	from	scratch;	instead,	you	must	start	with	at	least
a	template	document.	For	PDF	generation	in	particular,	I	suggest	using	the	ReportLab
toolkit,	which	has	a	free,	open-source	version.	They	also	have	a	number	of	examples	on
their	code	snippets	page	that	you	can	use.

That	said,	we'll	be	using	ReportLab	for	creating	files.	So	start	by	downloading	it	via	pip3:
	pip3	install	reportlab	.

Let's	start	with	creating	a	basic	PDF	document.	Create	a	new	file	called	basic_pdf.py
and	add	the	following	code:

from	reportlab.pdfgen	import	canvas

c	=	canvas.Canvas("hello.pdf")

c.drawString(100,	100,	"Hello	World")

c.save()

Take	a	look	at	the	file.	Simple,	right?	Take	note	of:

1.	 By	supplying	just	the	PDF	name,	hello.pdf,	the	file	is	created	in	the	same	directory
that	the	script	is	run	from.	You	can	supply	a	relative	or	absolute	path,	along	with	the
filename,	to	have	the	file	created	in	a	different	directory.

2.	 	drawString		takes	three	arguments:	points	from	the	left	margin,	points	from	the
bottom	of	the	page,	text	to	be	written.	1	point	=	1/72	inch.

So,	if	we	updated	that	file	to-

from	reportlab.pdfgen	import	canvas

c	=	canvas.Canvas("hello.pdf")

#	c.drawString(100,	100,	"Hello	World")

c.drawString(250,	500,	"Hello	World")

c.save()

-the	text	is	close	to	being	centered.

Real	Python	Part	1:	Introduction	to	Python

156Create	PDF	Files

http://www.reportlab.com/software/opensource/rl-toolkit/
http://www.reportlab.com/snippets/
https://bitbucket.org/rptlab/reportlab

You	can	also	specify	the		pagesize		as	letter,	which	defaults	to	A4,	and	use	inches	to
define	where	the	text	is	written/drawn:

from	reportlab.pdfgen	import	canvas

from	reportlab.lib.pagesizes	import	letter

from	reportlab.lib.units	import	inch

xmargin	=	3.2	*	inch

ymargin	=	6	*	inch

c	=	canvas.Canvas("hello_again.pdf",	pagesize=letter)

c.setLineWidth(1)

c.drawString(xmargin,	ymargin,	"Hello	World	from	ReportLab!")

c.save()

Now	let's	look	at	something	a	bit	more	complicated:

from	reportlab.pdfgen	import	canvas

from	reportlab.lib.pagesizes	import	letter

from	reportlab.lib.units	import	inch

from	reportlab.lib	import	colors

from	reportlab.platypus	import	Table

xmargin	=	3.2	*	inch

ymargin	=	6	*	inch

c	=	canvas.Canvas("tps_report.pdf",	pagesize=letter)

c.setFont('Helvetica',	12)

data	=	[['#1',	'#2',	'#3',	'#4',	'#5'],

								['10',	'11',	'12',	'13',	'14'],

								['20',	'21',	'22',	'23',	'24'],

								['30',	'31',	'32',	'33',	'34'],

								['20',	'21',	'22',	'23',	'24'],

								['20',	'21',	'22',	'23',	'24'],

								['20',	'21',	'22',	'23',	'24'],

								['20',	'21',	'22',	'23',	'24']]

t	=	Table(data)

t.setStyle([('TEXTCOLOR',	(0,0),	(4,0),	colors.red)])

t.wrapOn(c,	xmargin,	ymargin)

t.drawOn(c,	xmargin,	ymargin)

c.save()

Here	we	created	a	basic	table	(or	TPS	report).	The	main	difference	is	that	we're	using	a
table,	obviously:

Real	Python	Part	1:	Introduction	to	Python

157Create	PDF	Files

t	=	Table(data)

t.setStyle([('TEXTCOLOR',	(0,0),	(4,0),	colors.red)])

t.wrapOn(c,	xmargin,	ymargin)

t.drawOn(c,	xmargin,	ymargin)

c.save()

Put	simply,	we're	creating	the	table,	styling	the	header	using	coordinate	ranges	and	then
using	the		wrapOn		and		drawOn		functions	to	add	the	table	to	the	PDF	file.	For	more	on
tables,	check	out	Chapter	7	in	the	ReportLab	reference	docs.

Experiment	around	with	ReportLab.	For	example,	try	creating	an	invoice	or	adding	a	grid
to	the	table	we	created	or	importing	data	from	a	CSV	file.	Find	examples	on	Github	or
StackOverflow	and	work	with	them.	Add	your	own	data.	Figure	out	ways	that	you	can
automate	the	creation	of	certain	reports	or	letters.	Maybe	you	need	to	send	out	1,000
letters	where	the	only	difference	is	the	name.	How	can	you	automate	the	creation	of
these	using	ReportLab?

Real	Python	Part	1:	Introduction	to	Python

158Create	PDF	Files

http://www.reportlab.com/docs/reportlab-reference.pdf

SQL	Database	Connections
If	you're	interested	in	this	chapter,	I'm	assuming	that	you	have	at	least	a	basic
knowledge	of	SQL	and	the	concept	of	querying	a	database.	If	not,	you	might	want	to
take	a	moment	to	read	through	this	article	introducing	databases	and	browse	through
these	lessons	introducing	basic	SQL	code.

The	second	Real	Python	course,	Web	Development	with	Python,	provides	a	much
broader	overview	of	SQL	programming	as	well	as	numerous	examples	and
assignments.

There	are	many	different	variations	of	SQL,	and	some	are	suited	to	certain	purposes
better	than	others.	The	simplest,	most	lightweight	version	of	SQL	is	SQLite,	which	runs
directly	on	your	machine	and	comes	bundled	with	Python	automatically.

SQLite	is	usually	used	within	applications	for	small	internal	storage	tasks,	but	it	can	also
be	useful	for	testing	SQL	code	before	setting	an	application	up	to	use	a	larger	database.

In	order	to	communicate	with	SQLite,	we	need	to	import	the	module	and	connect	to	a
database:

import	sqlite3

connection	=	sqlite3.connect("test_database.db")

Here	we've	created	a	new	database	named	test_database.db,	but	connecting	to	an
existing	database	works	exactly	the	same	way.	Now	we	need	a	way	to	communicate
across	the	connection:

c	=	connection.cursor()

This	line	creates	a		Cursor		object,	which	will	let	us	execute	commands	on	the	SQL
database	and	return	the	results.	We'll	be	using	the	cursor	a	lot,	so	we	can	just	call	it		c	
for	short.	Now	we	easily	execute	regular	SQL	statements	on	the	database	through	the
cursor	like	so:

c.execute("CREATE	TABLE	People(FirstName	TEXT,	LastName	TEXT,	Age	INT)")

Real	Python	Part	1:	Introduction	to	Python

159SQL	Database	Connections

http://www.htmlgoodies.com/primers/database/article.php/3478051/Database-Basics-Part-1.htm
http://www.w3schools.com/sql/sql_intro.asp
http://www.realpython.com
http://www.sqlite.org/

This	line	creates	a	new	table	named		People		and	inserts	three	new	columns	into	the
table:	text	to	store	each	person's		FirstName	,	another	text	field	to	store	the		LastName	,
and	an	integer	to	store		Age	.	We	can	insert	data	into	this	new	table	like	so:

c.execute("INSERT	INTO	People	VALUES('Ron',	'Obvious',	42)")

connection.commit()

Here	we've	inserted	a	new	row,	with	a		FirstName		of	Ron,	a		LastName		of	Obvious,	and
an		Age		equal	to	42.	In	the	second	line,	we	had	to	commit	the	change	we	made	to	the
table	to	say	that	we	really	meant	to	change	the	table's	contents	-	otherwise	our	change
wouldn't	actually	be	saved.

NOTE:	We	used	double	quotation	marks	in	the	string	above,	with	single	quotes
denoting	strings	inside	of	the	SQL	statement.	Although	Python	doesn't
differentiate	between	using	single	and	double	quotes,	some	versions	of	SQL
(including	SQLite)	only	allow	strings	to	be	enclosed	in	single	quotation	marks,	so
it's	important	not	to	switch	these	around.

At	this	point,	you	could	close	and	restart	IDLE	completely,	and	if	you	then	reconnect	to
test_database.db,	your		People		table	will	still	exists	there,	storing	Ron	Obvious	and	his
Age;	this	is	why	SQLite	can	be	useful	for	internal	storage	for	those	times	when	it	makes
sense	to	structure	your	data	as	a	database	of	tables	rather	than	writing	output	to
individual	files.	The	most	common	example	of	this	is	to	store	information	about	users	of
an	application.

NOTE:	If	you	just	want	to	create	a	one-time-use	database	while	you're	testing
code	or	playing	around	with	table	structures,	you	can	use	the	special	name
:memory:	to	create	the	database	in	temporary	RAM	like	so:		connection	=
sqlite3.connect(':memory:')	

If	we	want	to	delete	the		People		table,	it's	as	easy	as	executing	a		DROP	TABLE	
statement:

c.execute("DROP	TABLE	IF	EXISTS	People")

(Here	we	also	checked	if	the	table	exists	before	trying	to	drop	it,	which	is	usually	a	good
idea;	it	helps	to	avoid	errors	if	we	happened	to	try	deleting	a	table	that's	already	been
deleted	or	never	actually	existed	in	the	first	place.)

Real	Python	Part	1:	Introduction	to	Python

160SQL	Database	Connections

Once	we're	done	with	a	database	connection,	we	should		close()		the	connection;	just
like	closing	files,	this	pushes	any	changes	out	to	the	database	and	frees	up	any
resources	currently	in	memory	that	are	no	longer	needed.	You	close	the	database
connection	in	the	same	way	as	with	files:

connection.close()

When	working	with	a	database	connection,	it's	also	a	good	idea	to	use	the		with	
keyword	to	simplify	your	code	(and	your	life),	similar	to	how	we	used		with		to	open	files:

with	sqlite3.connect("test_database.db")	as	connection:

				#	perform	any	SQL	operations	using	connection	here

Besides	making	your	code	more	compact,	this	will	benefit	you	in	a	few	important	ways.
Firstly,	you	no	longer	need	to		commit()		changes	you	make;	they're	automatically	saved.
Using		with		also	helps	with	handling	potential	errors	and	freeing	up	resources	that	are
no	longer	needed,	much	like	how	we	can	open	(and	automatically	close)	files	using	the
	with		keyword.	Keep	in	mind,	however,	that	you	will	still	need	to		commit()		a	change	if
you	want	to	see	the	result	of	that	change	immediately	(before	closing	the	connection);
we'll	see	an	example	of	this	later	in	the	section.

If	you	want	to	run	more	than	one	line	of	SQL	code	at	a	time,	there	are	a	couple	possible
options.	One	simple	option	is	to	use	the		executescript()		method	and	give	it	a	string
that	represents	a	full	script;	although	lines	of	SQL	code	will	be	separated	by	semicolons,
it's	common	to	pass	a	multi-line	string	for	readability.	Our	full	code	might	look	like	so:

import	sqlite3

with	sqlite3.connect('test_database.db')	as	connection:

				c	=	connection.cursor()

				c.executescript("""

								DROP	TABLE	IF	EXISTS	People;

								CREATE	TABLE	People(FirstName	TEXT,	LastName	TEXT,	Age	INT);

								INSERT	INTO	People	VALUES('Ron',	'Obvious',	'42');

""")

We	can	also	execute	many	similar	statements	by	using	the		executemany()		method	and
supplying	a	tuple	of	tuples,	where	each	inner	tuple	supplies	the	information	for	a	single
command.	For	instance,	if	we	have	a	lot	of	people's	information	to	insert	into	our
	People		table,	we	could	save	this	information	in	the	following	tuple	of	tuples:

Real	Python	Part	1:	Introduction	to	Python

161SQL	Database	Connections

people_values	=	(

											('Ron',	'Obvious',	42),

											('Luigi',	'Vercotti',	43),

											('Arthur',	'Belling',	28)

)

We	could	then	insert	all	of	these	people	at	once	(after	preparing	our	connection	and	our
	People		table)	by	using	the	single	line:

c.executemany("INSERT	INTO	People	VALUES(?,	?,	?)",	people_values)

Here,	the	question	marks	act	as	place-holders	for	the	tuples	in		people_values	;	this	is
called	a	parameterized	statement.	The	difference	between	parameterized	and	non-
parameterized	code	is	very	similar	to	how	we	can	write	out	strings	by	concatenating
many	parts	together	versus	using	the	string		format()		method	to	insert	specific	pieces
into	a	string	after	creating	it.

For	security	reasons,	especially	when	you	need	to	interact	with	a	SQL	table	based	on
user-supplied	input,	you	should	always	use	parameterized	SQL	statements.	This	is
because	the	user	could	potentially	supply	a	value	that	looks	like	SQL	code	and	causes
your	SQL	statement	to	behave	in	unexpected	ways.	This	is	called	a	"SQL	injection"
attack	and,	even	if	you	aren't	dealing	with	a	malicious	user,	it	can	happen	completely	by
accident.

For	instance,	suppose	we	want	to	insert	a	person	into	our		People		table	based	on	user-
supplied	information.	We	might	initially	try	something	like	the	following	(assuming	we
already	have	our	People	table	set	up):

import	sqlite3

#	get	person	data	from	user

first_name	=	input("Enter	your	first	name:	")

last_name	=	input("Enter	your	last	name:	")

age	=	int(input("Enter	your	age:	"))

#	execute	insert	statement	for	supplied	person	data

with	sqlite3.connect('test_database.db')	as	connection:

				c	=	connection.cursor()

				line	=	"INSERT	INTO	People	Values('"	+	first_name	+	"','"	+

								last_name	+	"',"	+	str(age)	+	")"

				c.execute(line)

Real	Python	Part	1:	Introduction	to	Python

162SQL	Database	Connections

http://xkcd.com/327/

Notice	how	we	had	to	change	age	into	an	integer	to	make	sure	that	it	was	a	valid	age,
but	then	we	had	to	change	it	back	into	a	string	in	order	to	concatenate	it	with	the	rest	of
the	line;	this	is	because	we	created	the	line	by	adding	a	bunch	of	strings	together,
including	using	single	quotation	marks	to	denote	strings	within	our	string.	If	you're	still
not	clear	how	this	works,	try	inserting	a	person	into	the	table	and	then		print		the	line	to
see	how	the	full	line	of	SQL	code	looks.

But	what	if	the	user's	name	included	an	apostrophe?	Try	adding	Flannery	O'Connor	to
the	table,	and	you'll	see	that	she	breaks	the	code;	this	is	because	the	apostrophe	gets
mixed	up	with	the	single	quotes	in	the	line,	making	it	appear	that	the	SQL	code	ends
earlier	than	expected.

In	this	case,	our	code	only	causes	an	error	(which	is	bad)	instead	of	corrupting	the	entire
table	(which	would	be	very	bad),	but	there	are	many	other	hard-to-predict	cases	that	can
break	SQL	tables	when	not	parameterizing	your	statements.	To	avoid	this,	we	should
have	used	place-holders	in	our	SQL	code	and	inserted	the	person	data	as	a	tuple:

import	sqlite3

#	get	person	data	from	user	and	insert	into	a	tuple

first_name	=	input("Enter	your	first	name:	")

last_name	=	input("Enter	your	last	name:	")

age	=	int(input("Enter	your	age:	"))

person_data	=	(first_name,	last_name,	age)

#	execute	insert	statement	for	supplied	person	data

with	sqlite3.connect('test_database.db')	as	connection:

				c	=	connection.cursor()

				c.execute("INSERT	INTO	People	VALUES(?,	?,	?)",	person_data)

We	can	also	update	the	content	of	a	row	by	using	a		SQL	UPDATE		statement.	For
instance,	if	we	wanted	to	change	the		Age		associated	with	someone	already	in	our
	People		table,	we	could	say	the	following	(for	a	cursor	within	a	connection):

c.execute("UPDATE	People	SET	Age=?	WHERE	FirstName=?	AND	LastName=?",

				(45,	'Luigi',	'Vercotti'))

Of	course,	inserting	and	updating	information	in	a	database	isn't	all	that	helpful	if	we
can't	fetch	that	information	back	out.	Just	like	with		readline()		and	readlines()	when
reading	files,	there	are	two	available	options;	we	can	either	retrieve	all	the	results	of	a

Real	Python	Part	1:	Introduction	to	Python

163SQL	Database	Connections

SQL	query,	using		fetchall()	,	or	retrieve	a	single	result	at	a	time,	using		fetchone()	.
First,	let's	insert	some	people	into	a	table	and	then	ask	SQL	to	retrieve	information	from
some	of	them:

import	sqlite3

people_values	=	(

											('Ron',	'Obvious',	42),

											('Luigi',	'Vercotti',	43),

											('Arthur',	'Belling',	28)

)

with	sqlite3.connect('test_database.db')	as	connection:

				c	=	connection.cursor()

				c.execute("DROP	TABLE	IF	EXISTS	People")

				c.execute("CREATE	TABLE	People(FirstName	TEXT,	LastName	TEXT,	Age	INT)")

				c.executemany("INSERT	INTO	People	VALUES(?,	?,	?)",	people_values)

				#	select	all	first	and	last	names	from	people	over	age	30

				c.execute("SELECT	FirstName,	LastName	FROM	People	WHERE	Age	>	30")

				for	row	in	c.fetchall():

								print(row)

We	executed	a		SELECT		statement	that	returned	the	first	and	last	names	of	all	people
over	the	age	of	30,	then	called		fetchall()		on	our	cursor	to	retrieve	the	results	of	this
query,	which	are	stored	as	a	list	of	tuples.	Looping	over	the	rows	in	this	list	to	view	the
individual	tuples,	we	see:

>>>

('Ron',	'Obvious')

('Luigi',	'Vercotti')

>>>

If	we	wanted	to	loop	over	our	result	rows	one	at	a	time	instead	of	fetching	them	all	at
once,	we	would	usually	use	a	loop	such	as	the	following:

c.execute("SELECT	FirstName,	LastName	FROM	People	WHERE	Age	>	30")

while	True:

				row	=	c.fetchone()

				if	row	is	None:

								break

				print(row)

Real	Python	Part	1:	Introduction	to	Python

164SQL	Database	Connections

This	checks	each	time	whether	our		fetchone()		returned	another	row	from	the	cursor,
displaying	the	row	if	so	and	breaking	out	of	the	loop	once	we	run	out	of	results.

The		None		keyword	is	the	way	that	Python	represents	the	absence	of	any	value	for	an
object.	When	we	wanted	to	compare	a	string	to	a	missing	value,	we	used	empty	quotes
to	check	that	the	string	object	had	no	information	inside:		stringName	==	""	

When	we	want	to	compare	other	objects	to	missing	values	to	see	if	those	objects	hold
any	information,	we	compare	them	to		None	,	like	so:		objectName	is	None	

This	comparison	will	return		True		if		objectName		exists	but	is	empty	and		False		if
	objectName		holds	any	value.

NOTE:		None		is	a	distinct	data	type	in	Python.	Test	this	out.	Open	the	Shell	and
assign		x	=	None	,	then	check		type(x)	.	You'll	see	that		x	's	type	is		<type
'NoneType'>	.

Review	exercises:

1.	 Create	a	database	table	in	RAM	named		Roster		that	includes	the	fields		Name	,
	Species		and		IQ	

2.	 Populate	your	new	table	with	the	following	values:

	Jean-Baptiste	Zorg,				Human,				122

	Korben	Dallas,					Meat	Popsicle,				100

	Ak'not,				Mangalore,				-5

3.	 Update	the	Species	of	Korben	Dallas	to	be	Human
4.	 Display	the	names	and	IQs	of	everyone	in	the	table	who	is	classified	as	Human

Real	Python	Part	1:	Introduction	to	Python

165SQL	Database	Connections

Use	Other	SQL	Variants
If	you	have	a	particular	type	of	SQL	database	that	you'd	like	to	access	through	Python,
most	of	the	basic	syntax	is	likely	to	be	identical	to	what	you	just	learned	for	SQLite.
However,	you'll	need	to	install	an	additional	package	in	order	to	interact	with	your
database	since	SQLite	is	the	only	built-in	option.	There	are	many	SQL	variants	and
corresponding	Python	packages	available.	A	few	of	the	most	commonly	used	and
reliable	open-source	alternatives	are:

1.	 The	pyodbc	module	allows	connections	to	most	types	of	databases.
2.	 Specifically	for	use	with	PostgreSQL:	Psycopg	is	one	of	the	most	frequently	used

package	to	interface	between	Python	and	PostgreSQL.	A	Windows	version,	win-
psycopg,	is	also	available.

3.	 Specifically	for	use	with	MySQL:	MySQLdb	offers	MySQL	support	for	Python.
Windows	users	might	want	to	try	the	myPySQL	extension	instead,	made	specifically
for	Windows.

One	difference	from	SQLite	(besides	the	actual	syntax	of	the	SQL	code,	which	changes
slightly	with	most	flavors	of	SQL)	is	that	when	you	connect	to	any	other	SQL	database,
you'll	need	to	supply	the	user	and	password	(as	well	as	your	host,	if	the	database	is
hosted	on	an	external	server).	Check	the	documentation	for	the	particular	package	you
want	to	use	to	figure	out	the	exact	syntax	for	how	to	make	a	database	connection.

Again,	check	out	the	second	Real	Python	course,	Web	Development	with	Python,
for	more	SQL	examples	and	lessons	in	SQLite	and	other	SQL	flavors.

Real	Python	Part	1:	Introduction	to	Python

166Use	Other	SQL	Variants

http://code.google.com/p/pyodbc/wiki/GettingStarted
http://wiki.python.org/moin/PostgreSQL
http://initd.org/psycopg/
http://www.stickpeople.com/projects/python/win-psycopg/
http://wiki.python.org/moin/MySQL
http://sourceforge.net/projects/mysql-python/
http://code.google.com/p/mypysql/
http://www.realpython.com

Interacting	with	the	Web
Given	the	hundreds	of	millions	of	websites	out	there,	chances	are	that	you	might	at
some	point	be	interested	in	gathering	data	from	a	webpage	-	or	perhaps	from	thousands
of	webpages.	In	this	chapter	we	will	explore	various	options	for	interacting	with	and
gathering	data	from	the	Internet	through	Python.

The	second	Real	Python	course,	Web	Development	with	Python,	provides	much
more	in	the	way	of	web	scraping,	utilizing	a	more	powerful	method.

Real	Python	Part	1:	Introduction	to	Python

167Interacting	with	the	Web

https://www.realpython.com

Scrape	and	Parse	Text	From	Websites
Collecting	data	from	websites	using	an	automated	process	is	known	as	web	scraping.
Some	websites	explicitly	forbid	users	from	scraping	their	data	with	automated	tools	like
the	ones	we	will	create.	Websites	do	this	for	either	of	two	possible	reasons:

1.	 The	site	has	a	good	reason	to	protect	its	data;	for	instance,	Google	Maps	will	not
allow	you	to	request	too	many	results	too	quickly

2.	 Making	many	repeated	requests	to	a	website's	server	may	use	up	bandwidth,
slowing	down	the	website	for	other	users	and	potentially	overloading	the	server
such	that	the	website	stops	responding	entirely

WARNING:	You	should	always	check	a	website's	acceptable	use	policy	before
scraping	its	data	to	see	if	accessing	the	website	by	using	automated	tools	is	a
violation	of	its	terms	of	use.	Legally,	web	scraping	against	the	wishes	of	a	website
is	very	much	a	gray	area,	but	I	just	want	to	make	it	clear	that	the	following
techniques	may	be	illegal	when	used	on	websites	that	prohibit	web	scraping.

The	primary	language	of	information	on	the	Internet	is	HTML	(HyperText	Markup
Language),	which	is	how	most	webpages	are	displayed	in	browsers.	For	instance,	if	you
browse	to	a	particular	website	and	choose	to	"view	page	source"	in	your	browser,	you
will	most	likely	be	presented	with	HTML	code	underlying	that	webpage;	this	is	the
information	that	your	browser	receives	and	translates	into	the	page	you	actually	see.

If	you	are	not	familiar	with	the	basics	of	HTML	tags,	you	should	take	a	time	to	read
through	the	first	dozen	chapters	of	a	brief	overview	of	HTML.	None	of	the	HTML	used	in
this	chapter	will	be	very	complicated,	but	having	a	solid	understanding	of	HTML
elements	is	an	important	prerequisite	for	developing	good	techniques	for	web	scraping.

The	second	Real	Python	course,	Web	Development	with	Python,	provides	an
overview	of	HTML	as	well.

Let's	start	by	grabbing	all	of	the	HTML	code	from	a	single	webpage.	We'll	take	a	very
simple	page	that's	been	set	up	just	for	practice:

Real	Python	Part	1:	Introduction	to	Python

168Scrape	and	Parse	Text	From	Websites

https://en.wikipedia.org/wiki/Web_scraping#Legal_issues
https://en.wikipedia.org/wiki/Web_scraping#Legal_issues
http://reference.sitepoint.com/html/page-structure
https://www.realpython.com
https://www.realpython.com/practice/aphrodite.html

from	urllib.request	import	urlopen

my_address	=	"https://realpython.com/practice/aphrodite.html"

html_page	=	urlopen(my_address)

html_text	=	html_page.read().decode('utf-8')

print	html_text

This	displays	the	following	result	for	us,	which	represents	the	full	HTML	of	the	page	just
as	a	web	browser	would	see	it:

>>>

<html>

		<head>

		<title>Profile:	Aphrodite</title>

		</head>

		<body	bgcolor="yellow">

				<center>

						

						

						<h2>Name:	Aphrodite</h2>

						

						Favorite	animal:	Dove

						

						Favorite	color:	Red

						

						Hometown:	Mount	Olympus

				</center>

		</body>

</html>

>>>

Calling		urlopen()		will	cause	the	following	error	if	Python	cannot	connect	to	the	Internet:
	URLError:	<urlopen	error	[Errno	11001]	getaddrinfo	failed>	

If	you	provide	an	invalid	web	address	that	can't	be	found,	you	will	see	the	following	error,
which	is	equivalent	to	the	"404"	page	that	a	browser	would	load:		HTTPError:	HTTP	Error
404:	Not	Found	

Now	we	can	scrape	specific	information	from	the	webpage	using	text	parsing	-	i.e.,
looking	through	the	full	string	of	text	and	grabbing	only	the	pieces	that	are	relevant	to	us.
For	instance,	if	we	wanted	to	get	the	title	of	the	webpage	(in	this	case,	"Profile:
Aphrodite"),	we	could	use	the	string		find()		method	to	search	through	the	text	of	the
HTML	for	the		<title>		tags	and	parse	out	the	actual	title	using	index	numbers:

Real	Python	Part	1:	Introduction	to	Python

169Scrape	and	Parse	Text	From	Websites

from	urllib.request	import	urlopen

my_address	=	"https://realpython.com/practice/aphrodite.html"

html_page	=	urlopen(my_address)

html_text	=	html_page.read().decode('utf-8')

start_tag	=	"<title>"

end_tag	=	"</title>"

start_index	=	html_text.find(start_tag)	+	len(start_tag)

end_index	=	html_text.find(end_tag)

print(html_text[start_index:end_index])

Running	this	script	correctly	displays	the	HTML	code	limited	to	only	the	text	in	the	title:

>>>

Profile:	Aphrodite

>>>

Of	course,	this	worked	for	a	very	simple	example,	but	HTML	in	the	real	world	can	be
much	more	complicated	and	far	less	predictable.	For	a	small	taste	of	the	"expectations
versus	reality"	of	text	parsing,	visit	poseidon.html	and	view	the	HTML	source	code.	It
looks	like	the	same	layout	as	before,	but	let's	try	running	the	same	script	as	before	on
	my_address	=	"https://realpython.com/practice/poseidon.html"	:

>>>

<head>

<title	>Profile:	Poseidon

>>>

We	didn't	manage	to	find	the	beginning	of	the		<title>		tag	correctly	this	time	because
there	was	a	space	before	the	closing	">",	like	so:		<title	>	.	Instead,	our		find()	
method	returned	-1	(because	the	exact	string		<title>		wasn't	found	anywhere)	and	then
added	the	length	of	the	tag	string,	making	us	think	that	the	beginning	of	the	title	was	six
characters	into	the	HTML	code.

Because	these	sorts	of	problems	can	occur	in	countless	unpredictable	ways,	a	more
reliable	alternative	than	using		find()		is	to	use	regular	expressions.	Regular
expressions	(shortened	to	"regex"	in	Python)	are	strings	that	can	be	used	to	determine
whether	or	not	text	matches	a	particular	pattern.

Real	Python	Part	1:	Introduction	to	Python

170Scrape	and	Parse	Text	From	Websites

https://www.realpython.com/practice/poseidon.html
http://en.wikipedia.org/wiki/Regular_expression

NOTE:	Regular	expressions	are	not	particular	to	Python;	they	are	a	general
programming	concept	that	can	be	used	with	a	wide	variety	of	programming
languages.	Regular	expressions	use	a	language	all	of	their	own	that	is	notoriously
difficult	to	learn	but	incredibly	useful	once	mastered.

Python	allows	us	to	use	regular	expressions	through	the		re		module.	Just	as	Python
uses	the	backslash	character	as	an	"escape	character"	for	representing	special
characters	that	can't	simply	be	typed	into	strings,	regular	expressions	use	a	number	of
different	"special"	characters	(called	meta-characters)	that	are	interpreted	as	ways	to
signify	different	types	of	patterns.	For	instance,	the	asterisk	character,		*	,	stands	for
"zero	or	more"	of	whatever	came	just	before	the	asterisk.	Let's	see	this	in	an	example,
where	we	use	the		re.findall()		function	to	find	any	text	within	a	string	that	matches	a
given	regular	expression.	The	first	argument	we	pass	to		re.findall()		is	the	regular
expression	that	we	want	to	match,	and	the	second	argument	is	the	string	to	test:

>>>	import	re

>>>	re.findall("ab*c",	"ac")

['ac']

>>>	re.findall("ab*c",	"abcd")

['abc']

>>>	re.findall("ab*c",	"acc")

['ac']

>>>	re.findall("ab*c",	"abcac")

['abc',	'ac']

>>>	re.findall("ab*c",	"abdc")

>>>

Our	regular	expression,		ab*c	,	matches	any	part	of	the	string	that	begins	with	an	"a",
ends	with	a	"c",	and	has	zero	or	more	of	"b"	in	between	the	two.	This	function	returns	a
list	of	all	matches.	Note	that	this	is	case-sensitive;	if	we	wanted	to	match	this	pattern
regardless	of	upper-case	or	lower-case	differences,	we	could	pass	a	third	argument	with
the	value		re.IGNORECASE	,	which	is	a	specific	variable	stored	in	the		re		module:

>>>	re.findall("ab*c",	"ABC")

>>>	re.findall("ab*c",	"ABC",	re.IGNORECASE)

['ABC']

>>>

We	can	use	a	period	to	stand	for	any	single	character	in	a	regular	expression.	For
instance,	we	could	find	all	the	strings	that	contains	the	letters	"a"	and	"c"	separated	by	a
single	character	as	follows:

Real	Python	Part	1:	Introduction	to	Python

171Scrape	and	Parse	Text	From	Websites

>>>	re.findall("a.c",	"abc")

['abc']

>>>	re.findall("a.c",	"abbc")

>>>	re.findall("a.c",	"ac")

>>>	re.findall("a.c",	"acc")

['acc']

>>>

Therefore,	putting	the	term		.*		inside	of	a	regular	expression	stands	for	any	character
being	repeated	any	number	of	times.	For	instance,	if	we	wanted	to	find	every	string
inside	of	a	particular	string	that	starts	with	the	letter	"a"	and	ends	with	the	letter	"c",
regardless	of	what	occurs	in	between	these	two	letters,	we	could	say:

>>>	re.findall("a.*c",	"abc")

['abc']

>>>	re.findall("a.*c",	"abbc")

['abbc']

>>>	re.findall("a.*c",	"ac")

['ac']

>>>	re.findall("a.*c",	"acc")

['acc']

>>>

Usually	we	will	want	to	use	the		re.search()		function	to	search	for	a	particular	pattern
inside	a	string.	This	function	is	somewhat	more	complicated	because	it	returns	an	object
called	a	MatchObject	that	stores	different	"groups"	of	data;	this	is	because	there	might
be	matches	inside	of	other	matches,	and		re.search()		wants	to	return	every	possible
result.	The	details	of	MatchObject	are	irrelevant	here,	but	for	our	purposes,	calling	the
	group()		method	on	a		MatchObject		will	return	the	first	and	most	inclusive	result,	which
most	instances	is	all	we	care	to	find.	For	instance:

>>>	match_results	=	re.search("ab*c",	"ABC",	re.IGNORECASE)

>>>	print(match_results.group())

ABC

>>>

There	is	one	more		re		function	that	will	come	in	handy	when	parsing	out	text.	The
	sub()		function,	which	is	short	for	"substitute,"	allows	us	to	replace	text	in	a	string	that
matches	a	regular	expression	with	new	text	(much	like	the	string		replace()		method).
The	arguments	passed	to		re.sub()		are	the	regular	expression,	followed	by	the
replacement	text,	followed	by	the	string.	For	instance:

Real	Python	Part	1:	Introduction	to	Python

172Scrape	and	Parse	Text	From	Websites

>>>	my_string	=	"Everything	is	<replaced>	if	it's	in	<tags>."

>>>	my_string	=	re.sub("<.*>",	"ELEPHANTS",	my_string)

>>>	print(my_string)

Everything	is	ELEPHANTS.

>>>

Perhaps	that	wasn't	quite	what	we	expected	to	happen...	We	found	and	replaced
everything	in	between	the	first		<		and	last		>	,	which	ended	up	being	most	of	the	string.
This	is	because	Python's	regular	expressions	are	greedy,	meaning	that	they	try	to	find
the	longest	possible	match	when	characters	like		*		are	used.	Instead,	we	should	have
used	the	non-greedy	matching	pattern		*?	,	which	works	the	same	way	as		*		except
that	it	tries	to	match	the	shortest	possible	string	of	text:

>>>	my_string	=	"Everything	is	<replaced>	if	it's	in	<tags>."

>>>	my_string	=	re.sub("<.*?>",	"ELEPHANTS",	my_string)

>>>	print(my_string)

Everything	is	ELEPHANTS	if	it's	in	ELEPHANTS.

>>>

Armed	with	all	this	knowledge,	let's	now	try	to	parse	out	the	title	from	dionysus.html,
which	includes	this	rather	carelessly	written	line	of	HTML:

<TITLE	>Profile:	Dionysus</title		/	>

Our		find()		method	would	have	a	difficult	time	dealing	with	the	inconsistencies	here,
but	with	the	clever	use	of	regular	expressions,	we	will	be	able	to	handle	this	code	easily:

import	re

from	urllib.request	import	urlopen

my_address	=	"https://realpython.com/practice/dionysus.html"

html_page	=	urlopen(my_address)

html_text	=	html_page.read()

#	Python	3:	html_text	=	html_page.read().decode('utf-8')

match_results	=	re.search("<title	.*?>.*</title	.*?>",	html_text,	re.IGNORECASE)

title	=	match_results.group()

title	=	re.sub("<.*?>",	"",	title)	#	remove	HTML	tags

print(title)

Real	Python	Part	1:	Introduction	to	Python

173Scrape	and	Parse	Text	From	Websites

https://www.realpython.com/practice/dionysus.html

Let's	take	the	first	regular	expression	we	used	and	break	it	down	into	three	parts:

1.	 	<title	.*?>		-	First	we	check	for	the	opening	tag,	where	there	must	be	a	space
after	the	word	"title"	and	the	tag	must	be	closed,	but	any	characters	can	appear	in
the	rest	of	the	tag;	we	use	the	non-greedy		.*?		because	we	want	the	first	closing
">"	to	match	the	tag's	end

2.	 	.*		-	Any	characters	can	appear	in	between	the		<title>		tags
3.	 	</title	.*?>		-	This	expression	is	the	same	as	the	first	part,	except	that	we	also

require	the	forward	slash	before	"title"	because	this	is	a	closing	HTML	tag

Likewise,	we	then	use	the	non-greedy		.*?		placed	inside	of	an	HTML	tag	to	match	any
HTML	tags	and	remove	them	from	the	parsed-out	title.

Regular	expressions	are	an	incredibly	powerful	tool	when	used	correctly.	We've	only
scratched	the	surface	of	their	potential	here,	so	do	take	some	time	to	study	them	very
thorough	Python	Regular	Expression	HOWTO	document.

Be	sure	to	also	check	out	the	Appendix	section	on	regular	expressions	for	even
more	practice.

NOTE:	Web	scraping	in	practice	can	be	very	tedious	work.	Beyond	the	fact	that
no	two	websites	are	organized	the	same	way,	usually	webpages	are	messy	and
inconsistent	in	their	formatting.	This	leads	to	a	lot	of	time	spent	handling
unexpected	exceptions	to	every	rule,	which	is	less	than	ideal	when	you	want	to
automate	a	task.	What's	more,	even	after	you	spend	the	time	to	build	your
scraper,	you	will	probably	have	to	continue	to	periodically	update	it	as	the	HTML
in	a	given	site	changes.

Review	exercises:

1.	 Write	a	script	that	grabs	the	full	HTML	from	the	page	dionysus.html
2.	 Use	the	string		find()		method	to	display	the	text	following	"Name:"	and	"Favorite

Color:"	(not	including	any	leading	spaces	or	trailing	HTML	tags	that	might	appear	on
the	same	line)

3.	 Repeat	the	previous	exercise	using	regular	expressions;	the	end	of	each	pattern
should	be	a	"<"	(i.e.,	the	start	of	an	HTML	tag)	or	a	newline	character,	and	you
should	remove	any	extra	spaces	or	newline	characters	from	the	resulting	text	using
the	string	strip()	method

Real	Python	Part	1:	Introduction	to	Python

174Scrape	and	Parse	Text	From	Websites

https://docs.python.org/3.5/howto/regex.html
https://www.realpython.com/practice/dionysus.html
https://docs.python.org/3.5/library/stdtypes.html#str.strip

Real	Python	Part	1:	Introduction	to	Python

175Scrape	and	Parse	Text	From	Websites

Use	an	HTML	Parser	to	Scrape	Websites
Although	regular	expressions	are	great	for	pattern	matching	in	general,	sometimes	it's
easier	to	use	an	HTML	parser	that	is	designed	specifically	for	piecing	apart	HTML
pages.	There	are	a	number	of	Python	tools	written	for	this	purpose,	but	the	most	popular
(and	easiest	to	learn)	is	named	Beautiful	Soup.

To	set	up	Beautiful	Soup	run		pip3	install	beautifulsoup4	.

Otherwise,	download	the	compressed	.tar.gz	file,	unzip	it,	then	install	Beautiful	Soup
using	the	setup.py	script	from	the	command	line	or	Terminal	as	described	in	the	chapter
on	installing	packages.

For	Debian/Linux,	just	type:		sudo	apt-get	install	python-bs4	

Once	you	have	Beautiful	Soup	installed,	you	can	now	import	the		bs4		module	and	pass
a	string	of	HTML	to		BeautifulSoup		to	begin	parsing:

from	bs4	import	BeautifulSoup

from	urllib.request	import	urlopen

my_address	=	"https://realpython.com/practice/dionysus.html"

html_page	=	urlopen(my_address)

html_text	=	html_page.read()	#	Py	3:	decode

my_soup	=	BeautifulSoup(html_text)

From	here,	we	can	parse	data	out	of		my_soup		in	various	useful	ways	depending	on	what
information	we	want.	For	instance,	BeautifulSoup	includes	a		get_text()	method	for
extracting	just	the	text	from	a	document,	removing	any	HTML	tags	automatically:

>>>	print(my_soup.get_text())

Profile:	Dionysus

Name:	Dionysus

Hometown:	Mount	Olympus

Favorite	animal:	Leopard

Favorite	Color:	Wine

>>>

Real	Python	Part	1:	Introduction	to	Python

176Use	an	HTML	Parser	to	Scrape	Websites

http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/bs4/download/4.3/

There	are	a	lot	of	extra	blank	lines	left,	but	these	can	always	be	taken	out	using	the
string		replace()		method.	If	we	only	want	to	get	specific	text	from	an	HTML	document,
using	Beautiful	Soup	to	extract	the	text	first	and	then	using		find()		is	sometimes	easier
than	working	with	regular	expressions.

However,	sometimes	the	HTML	tags	are	actually	the	elements	that	point	out	the	data	we
want	to	retrieve.	For	instance,	perhaps	we	want	to	retrieve	links	for	all	the	images	on	the
page,	which	will	appear	in				HTML	tags.	In	this	case,	we	can	use	the		find_all()	
method	to	return	a	list	of	all	instances	of	that	particular	tag:

>>>	print(my_soup.find_all("img"))

[,	

Hometown:	Mount	Olympus

Favorite	animal:	Leopard	

Favorite	Color:	Wine

</br></br></br></br></br></br>]

>>>

This	wasn't	exactly	what	we	expected	to	see,	but	it	happens	quite	often	in	the	real	world;
the	first	element	of	the	list,			,	is	a	"self-closing"	HTML	image
tag	that	doesn't	require	a	closing				tag.	Unfortunately,	whoever	wrote	the	sloppy
HTML	for	this	page	never	added	a	closing	forward	slash	to	the	second	HTML	image	tag,
		,	and	didn't	include	a				tag	either.	So	Beautiful	Soup
ended	up	grabbing	a	fair	amount	of	HTML	after	the	image	tag	as	well	before	inserting	a
			on	its	own	to	correct	the	HTML.

Fortunately,	this	still	doesn't	have	much	bearing	on	how	we	can	parse	information	out	of
the	image	tags	with	Beautiful	Soup.	This	is	because	these	HTML	tags	are	stored	as
	Tag		objects,	and	we	can	easily	extract	certain	information	out	of	each	Tag.	In	our
example,	assume	for	simplicity	that	we	know	to	expect	two	images	in	our	list	so	that	we
can	pull	two		Tag		objects	out	of	the	list:

>>>	image1,	image2	=	my_soup.find_all("img")

>>>

We	now	have	two		Tag		objects,		image1		and		image2	.	These		Tag		objects	each	have	a
name,	which	is	just	the	type	of	HTML	tag	that	to	which	they	correspond:

Real	Python	Part	1:	Introduction	to	Python

177Use	an	HTML	Parser	to	Scrape	Websites

>>>	print(image1.name)

img

>>>

These		Tag		objects	also	have	various	attributes,	which	can	be	accessed	in	the	same
way	as	a	dictionary.	The	HTML	tag				has	a	single	attribute
	src		that	takes	on	the	value		dionysus.jpg		(much	like	a	key/value	pair	in	a	dictionary).
Likewise,	an	HTML	tag	such	as			
would	have	two	attributes,	a		href		attribute	that	is	assigned	the	value
	https://realpython.com		and	a		target		attribute	that	has	the	value		_blank	.

We	can	therefore	pull	the	image	source	(the	link	that	we	wanted	to	parse)	out	of	each
image	tag	using	standard	dictionary	notation	to	get	the	value	that	the		src		attribute	of
the	image	has	been	assigned:

>>>	print(image1["src"])

dionysus.jpg

>>>	print(image2["src"])

grapes.png

>>>

Even	though	the	second	image	tag	had	a	lot	of	extra	HTML	code	associated	with	it,	we
could	still	pull	out	the	value	of	the	image		src		without	any	trouble	because	of	the	way
Beautiful	Soup	organizes	HTML	tags	into		Tag		objects.

In	fact,	if	we	only	want	to	grab	a	particular	tag,	we	can	identify	it	by	the	corresponding
name	of	the		Tag		object	in	our	soup:

>>>	print(my_soup.title)

<title>Profile:	Dionysus</title>

>>>

Notice	how	the	HTML		<title>		tags	have	automatically	been	cleaned	up	by	Beautiful
Soup.	Furthermore,	if	we	want	to	extract	only	the	string	of	text	out	of	the		<title>		tags
(without	including	the	tags	themselves),	we	can	use	the	string	attribute	stored	by	the
title:

>>>	print(my_soup.title.string)

Profile:	Dionysus

>>>

Real	Python	Part	1:	Introduction	to	Python

178Use	an	HTML	Parser	to	Scrape	Websites

We	can	even	search	for	specific	kinds	of	tags	whose	attributes	match	certain	values.	For
instance,	if	we	wanted	to	find	all	of	the				tags	that	had	a		src		attribute	equal	to	the
value		dionysus.jpg	,	we	could	provide	the	following	additional	argument	to	the	find_all()
method:

>>>	my_soup.find_all("img",	src="dionysus.jpg")

[]

>>>

In	this	case,	the	example	is	somewhat	arbitrary	since	we	only	returned	a	list	that
contained	a	single	image	tag,	but	we	will	use	this	technique	in	a	later	section	in	order	to
help	us	find	a	specific	HTML	tag	buried	in	a	vast	sea	of	other	HTML	tags.

Although	Beautiful	Soup	is	an	excellent	tool,	it	has	it's	limitations.	lxml	is	somewhat
trickier	to	get	started	using,	but	offers	all	of	the	same	functionality	as	Beautiful	Soup	and
more.	Once	you	are	comfortable	with	the	basics	of	Beautiful	Soup,	you	should	move	on
to	learning	how	to	use	lxml	for	more	complicated	HTML	parsing	tasks.

NOTE:	HTML	parsers	like	Beautiful	Soup	can	(and	often	do)	save	a	lot	of	time	and
effort	when	it	comes	to	locating	specific	data	in	webpages.	However,	sometimes
HTML	is	so	poorly	written	and	disorganized	that	even	a	sophisticated	parser	like
Beautiful	Soup	doesn't	really	know	how	to	interpret	the	HTML	tags	properly.	In	this
case,	you're	often	left	to	your	own	devices	(namely,		find()		and	regex)	to	try	to
piece	out	the	information	you	need.

Review	exercises:

1.	 Write	a	script	that	grabs	the	full	HTML	from	the	page	profiles.html
2.	 Parse	out	a	list	of	all	the	links	on	the	page	using	Beautiful	Soup	by	looking	for	HTML

tags	with	the	name		a		and	retrieving	the	value	taken	on	by	the		href		attribute	of
each	tag

3.	 Get	the	HTML	from	each	of	the	pages	in	the	list	by	adding	the	full	path	to	the	file
name,	and	display	the	text	(without	HTML	tags)	on	each	page	using	Beautiful
Soup's		get_text()		method

Real	Python	Part	1:	Introduction	to	Python

179Use	an	HTML	Parser	to	Scrape	Websites

http://lxml.de/
https://www.realpython.com/practice/profiles.html

Interact	with	HTML	Forms
We	usually	retrieve	information	from	the	Internet	by	sending	requests	for	webpages.	A
module	like		urllib		serves	us	well	for	this	purpose,	since	it	offers	a	very	simple	way	of
returning	the	HTML	from	individual	webpages.	Sometimes,	however,	we	need	to	send
information	back	to	a	page	-	for	instance,	submitting	our	information	on	a	login	form.	For
this,	we	need	an	actual	browser.	There	are	a	number	of	web	browsers	built	for	Python,
and	one	of	the	most	popular	and	easiest	to	use	is	in	a	module	called	MechanicalSoup.

Essentially,	MechanicalSoup	is	an	alternative	to		urllib		that	can	do	all	of	the	same
things	but	has	more	added	functionality	that	will	allow	us	to	talk	back	to	webpages
without	using	a	standalone	browser,	perfect	for	fetching	web	pages,	clicking	on	buttons
and	links,	and	filling	out	and	submitting	forms.

To	install	run	this	command:

$	pip3	install	MechanicalSoup

Otherwise,	download	the	.tar.gz	file,	decompress	it,	and	install	the	package	by	running
the	setup.py	script	from	your	Terminal	as	described	in	the	section	on	installing
packages.

You	may	need	to	close	and	restart	your	IDLE	session	for	MechanicalSoup	to	load	and
be	recognized	after	it's	been	installed.

Getting	MechanicalSoup	to	create	a	new	Browser	object	and	use	it	to	open	a	webpage
is	as	easy	as	saying:

import	mechanicalsoup

my_browser	=	mechanicalsoup.Browser()

page	=	my_browser.get("https://realpython.com/practice/aphrodite.html")

We	now	have	various	information	that	the	website	returned	to	us	stored	in	our		response	
variable.	If	we	access	the	attribute		soup	,	we'll	see	all	of	the	html	from	the	page:

Real	Python	Part	1:	Introduction	to	Python

180Interact	with	HTML	Forms

https://github.com/hickford/MechanicalSoup
https://pypi.python.org/pypi/mechanize/

>>>	print(page.soup)

<html>

		<head>

		<title>Profile:	Aphrodite</title>

		</head>

		<body	bgcolor="yellow">

		<center>

				

						

						<h2>Name:	Aphrodite</h2>

						

						Favorite	animal:	Dove

						

						Favorite	color:	Red

						

						Hometown:	Mount	Olympus

				</center>

		</body>

</html>

>>>

But	what	if	we	have	to	submit	information	to	the	website?	For	instance,	what	if	the
information	we	want	is	behind	a	login	page	such	as
https://www.realpython.com/practice/login.php?	If	we	are	trying	to	do	things
automatically,	then	we	will	need	a	way	to	automate	the	login	process	as	well.

First,	let's	take	a	look	at	the	HTML	page	provided	by	login.php:

import	mechanicalsoup

my_browser	=	mechanicalsoup.Browser()

page	=	my_browser.get("https://realpython.com/practice/login.php")

print(page.soup)

This	returns	the	following	form	(which	you	should	take	a	look	at	in	a	regular	browser	as
well	to	see	how	it	appears):

Real	Python	Part	1:	Introduction	to	Python

181Interact	with	HTML	Forms

https://www.realpython.com/practice/login.php

<html>

		<head>

		<title>Log	In</title>

		</head>

		<body	bgcolor="yellow">

		<center>

						

						<h2>Please	log	in	to	access	Mount	Olympus:</h2>

						

						<form	name="login"	action="login.php"	method="post">

								Username:	<input	type="text"	name="user">

								Password:	<input	type="password"	name="pwd">

								<input	type="submit"	value="Submit">

						</form>

				</center>

		</body>

</html>

>>>

The	code	we	see	is	HTML,	but	the	page	itself	is	written	in	another	language	called	PHP.
In	this	case,	the	PHP	code	is	creating	the	HTML	that	we	see	based	on	the	information
we	provide.	For	instance,	try	logging	into	the	page	with	an	incorrect	username	and
password,	and	you	will	see	that	the	same	page	now	includes	a	line	of	text	to	let	you
know:	"Wrong	username	or	password!"	However,	if	you	provide	the	correct	login
information	(username	of	"zeus"	and	password	of	"ThunderDude"),	you	will	be	redirected
to	the	profiles	page	page.

For	our	purposes,	the	important	section	of	HTML	code	is	the	login	form,	i.e.,	everything
inside	the		<form>		tags.	We	can	see	that	there	is	a	submission		<form>		named	"login"
that	includes	two		<input>		tags,	one	named		user		and	the	other	named		pwd	.	The	third
	<input>		is	the	actual	"Submit"	button.	Now	that	we	know	the	underlying	structure	of	the
form,	we	can	return	to	mechanize	to	automate	the	login	process.

Real	Python	Part	1:	Introduction	to	Python

182Interact	with	HTML	Forms

https://www.realpython.com/practice/profiles.html

import	mechanicalsoup

my_browser	=	mechanicalsoup.Browser()

login_page	=	my_browser.get("https://realpython.com/practice/login.php")

login_html	=	login_page.soup

#	select	the	form	and	fill	in	its	fields

form	=	login_html.select("form")[0]

form.select("input")[0]["value"]	=	"zeus"

form.select("input")[1]["value"]	=	"ThunderDude"

profiles_page	=	my_browser.submit(form,	login_page.url)	#	submit	form

print(profiles_page.url)	#	make	sure	we	were	redirected

print(profiles_page.soup)	#	show	html

We	used	the	browser's		select()		method	to	grab	the	form.	Then	we	passed	our	login
values	by	accessing	the		value		attribute	of	the	html		input	's.	Finally,	using	the	the
browser	object	again,	we	submitted	our	form	with	the		submit()		method,	which	takes	a
form	element	and	a	url,	and	returns	and	object	containing	information	about	the	page	we
were	redirected	to.

We	displayed	the	URL	of	this	response	to	make	sure	that	our	login	submission	worked;	if
we	had	provided	an	incorrect	username	or	password	then	we	would	have	been	sent
back	to	the	login	page,	but	we	see	that	we	were	successfully	redirected	to	profiles	as
planned.

NOTE:	We	are	always	being	encouraged	to	use	long	passwords	with	many
different	types	of	characters	in	them,	and	now	you	know	the	main	reason:
automated	scripts	like	the	one	we	just	designed	can	be	used	by	hackers	to	"brute
force"	logins	by	rapidly	trying	to	log	in	with	many	different	usernames	and
passwords	until	they	find	a	working	combination.	Besides	this	being	highly	illegal,
almost	all	websites	these	days	(including	my	practice	form)	will	lock	you	out	and
report	your	IP	address	if	they	see	you	making	too	many	failed	requests,	so	don't
try	it!

We	were	able	to	retrieve	the	webpage	form	by	name	because	mechanize	includes	its
own	HTML	parser.	We	can	use	this	parser	through	various	browser	methods	as	well	to
easily	obtain	other	types	of	HTML	elements.	The		links()		method	will	return	all	the	links
appearing	on	the	browser's	current	page	as	Link	objects,	which	we	can	then	loop	over	to
obtain	their	addresses.	For	instance,	if	our	browser	is	still	on	the	profiles	page,	we	could
say:

Real	Python	Part	1:	Introduction	to	Python

183Interact	with	HTML	Forms

https://www.realpython.com/practice/login.php
https://www.realpython.com/practice/profiles.html
https://www.realpython.com/practice/profiles.html

for	link	in	profiles_page.soup.select("a"):

				print("Address:",	link["href"])

				print("Text:",	link.text)

This	returns:

Address:	https://realpython.com/practice/aphrodite.html

Text:	Aphrodite

Address:	https://realpython.com/practice/poseidon.html

Text:	Poseidon

Address:	https://realpython.com/practice/dionysus.html

Text:	Dionysus

>>>

Html	elements	have	a	number	of	attributes.	Here	as	we	are	accessing	an		a		tag	we	van
grab	the	"href"	and	we	also	have	access	to	the	inner	text.	Depending	on	what	element
you	are	dealing	with	you	will	access	the	attributes	with	either	dot	notation	or	bracket
notation.

With	the	simple	functionality	of	MechanicalSoup	you	can	get	a	lot	done.	By	utilizing
	get	,		select	,	and		submit		methods	we	can	navigate	to	pages,	access	the	html	and
submit	custom	information	into	forms.	Currently	the	documentation	for	MechanicalSoup
is	non-existent,	but	there	are	a	few	more	method	available	that	you	can	find	if	you	look
through	the	source	code.

Review	exercises:

1.	 Use	MechanicalSoup	to	provide	the	correct	username	"zeus"	and	password
"ThunderDude"	to	the	login	page	submission	form	located	at:
https://realpython.com/practice/login.php

2.	 Using	Beautiful	Soup,	display	the	title	of	the	current	page	to	determine	that	you
have	been	redirected	to	profiles.html

3.	 Use	mechanize	to	return	to	login	page	by	going	"back"	to	the	previous	page
4.	 Provide	an	incorrect	username	and	password	to	the	login	form,	then	search	the

HTML	of	the	returned	webpage	for	the	text	"Wrong	username	or	password!"	to
determine	that	the	login	process	failed

Real	Python	Part	1:	Introduction	to	Python

184Interact	with	HTML	Forms

https://github.com/hickford/MechanicalSoup
https://www.realpython.com/practice/login.php
https://www.realpython.com/practice/profiles.html
https://www.realpython.com/practice/login.php

Interact	with	Websites	in	Real-time
Sometimes	we	want	to	be	able	to	fetch	real-time	data	from	a	website	that	offers
continually	updated	information.	In	the	dark	days	before	you	learned	Python
programming,	you	would	have	been	forced	to	sit	in	front	of	a	browser,	clicking	the
"Refresh"	button	to	reload	the	page	each	time	you	want	to	check	if	updated	content	is
available.	Instead,	we	can	easily	automate	this	process	using	the		get()		method	of	the
MechanicalSoup	browser.

As	an	example,	let's	create	a	script	that	periodically	checks	Yahoo!	Finance	for	a	current
stock	quote	for	the	"YHOO"	symbol.	The	first	step	with	any	web	scraping	task	is	to	figure
out	exactly	what	information	we're	seeking.	In	this	case,	the	webpage	URL	is
http://finance.yahoo.com/q?s=yhoo.	Currently,	the	stock	price	(as	I	see	it)	is	40.01,	and
so	we	view	the	page's	HTML	source	code	and	search	for	this	number.	Fortunately,	it
only	occurs	once	in	the	code:

40.01

Next,	we	check	that	the	tag				also	only	occurs	once	in	the
webpage,	since	we	will	need	a	way	to	uniquely	identify	the	location	of	the	current	price.	If
this	is	the	only				tag	with	an		id		attribute	equal	to	"yfs_l84_yhoo",	then	we	know
we'll	be	able	to	find	it	on	the	webpage	later	and	extract	the	information	we	need	from	this
particular	pair	of				tags.

We're	in	luck	(this	is	the	only				tag	with	this		id),	so	we	can	use	MechanicalSoup
to	find	and	display	the	current	price,	like	so:

import	mechanicalsoup

my_browser	=	mechanicalsoup.Browser()

page	=	my_browser.get("http://finance.yahoo.com/q?s=yhoo")

html_text	=	page.soup

#	return	a	list	of	all	the	tags	where	the	id	is	'yfs_184_yhoo'

my_tags	=	html_text.select("#yfs_l84_yhoo")

#	take	the	BeautifulSoup	string	out	of	the	first	(and	only)		tag

my_price	=	my_tags[0].text

print("The	current	price	of	YHOO	is:	{}".format(my_price))

Real	Python	Part	1:	Introduction	to	Python

185Interact	with	Websites	in	Real-time

http://finance.yahoo.com/q?s=yhoo

Now,	in	order	to	repeatedly	get	the	newest	stock	quote	available,	we'll	need	to	create	a
loop	that	loads	the	page	in	the	browser	each	time.	But	first,	we	should	check	the	Yahoo!
Finance	terms	of	use	to	make	sure	that	this	isn't	in	violation	of	their	acceptable	use
policy.	The	terms	state	that	we	should	not	"use	the	Yahoo!	Finance	Modules	in	a	manner
that	exceeds	reasonable	request	volume	[or]	constitutes	excessive	or	abusive	usage,"
which	seems	reasonable	enough.	Of	course,	reasonable	and	excessive	are	entirely
subjective	terms,	but	the	general	rules	of	Internet	etiquette	suggest	that	you	don't	ask	for
more	data	than	you	need.	Sometimes,	the	amount	of	data	you	"need"	for	a	particular	use
might	still	be	considered	excessive,	but	following	this	rule	is	a	good	place	to	start.

In	our	case,	an	infinite	loop	that	grabs	stock	quotes	as	quickly	as	possible	is	definitely
more	than	we	need,	especially	since	it	appears	that	Yahoo!	only	updates	its	stock
quotes	once	per	minute.	Since	we'll	only	be	using	this	script	to	make	a	few	webpage
requests	as	a	test,	let's	wait	one	minute	in	between	each	request.	We	can	pause	the
functioning	of	a	script	by	passing	a	number	of	seconds	to	the		sleep()		method	of
Python's		time		module,	like	so:

from	time	import	sleep

print	"I'm	about	to	wait	for	five	seconds..."

sleep(5)

print	"Done	waiting!"

Although	we	won't	explore	them	here,	Python's	time	module	also	includes	various	ways
to	get	the	current	time	in	case	we	wished	to	add	a	"time	stamp"	to	each	price.

Using	the		sleep()		method,	we	can	now	repeatedly	obtain	real-time	stock	quotes:

Real	Python	Part	1:	Introduction	to	Python

186Interact	with	Websites	in	Real-time

https://policies.yahoo.com/us/en/yahoo/terms/utos/index.htm
https://docs.python.org/3.5/library/time.html

from	time	import	sleep

import	mechanicalsoup

my_browser	=	mechanicalsoup.Browser()

#	obtain	1	stock	quote	per	minute	for	the	next	3	minutes

for	i	in	range(0,	3):

				page	=	my_browser.get("http://finance.yahoo.com/q?s=yhoo")

				html_text	=	page.soup

				#	return	a	list	of	all	the	tags	where	the	id	is	'yfs_184_yhoo'

				my_tags	=	html_text.select("#yfs_l84_yhoo")

				#	take	the	BeautifulSoup	string	out	of	the	first	tag

				my_price	=	my_tags[0].text

				print("The	current	price	of	YHOO	is:	{}".format(my_price))

				if	i<2:	#	wait	a	minute	if	this	isn't	the	last	request

								sleep(60)

Review	exercises:

1.	 Repeat	the	example	in	this	section	to	scrape	YHOO	stock	quotes,	but	additionally
include	the	current	time	of	the	quote	as	obtained	from	the	Yahoo!	Finance	webpage;
this	time	can	be	taken	from	part	of	a	string	inside	another	span	tag	that	appears
shortly	after	the	actual	stock	price	in	the	webpage's	HTML

Again,	check	out	the	second	Real	Python	course,	Web	Development	with	Python,
which	provides	much	more	in	the	way	of	web	scraping,	utilizing	a	more	powerful
scraping	library,	Scrapy.

Real	Python	Part	1:	Introduction	to	Python

187Interact	with	Websites	in	Real-time

https://www.realpython.com
http://scrapy.org/

Scientific	Computing	and	Graphing
If	you	are	a	scientist,	an	engineer,	or	the	sort	of	person	who	couldn't	survive	a	week
without	using	MATLAB,	chances	are	high	that	you	will	want	to	make	use	of	the	NumPy
and	SciPy	packages	to	increase	your	Python	coding	abilities.	Even	if	you	don't	fall	into
one	of	those	categories,	these	tools	can	still	be	quite	useful.	This	section	will	introduce
you	to	a	Python	package	that	lets	you	store	and	manipulate	matrices	of	data,	and	the
next	section	will	introduce	an	additional	package	that	makes	it	possible	to	visualize	data
through	endless	varieties	of	graphs	and	charts.

Real	Python	Part	1:	Introduction	to	Python

188Scientific	Computing	and	Graphing

http://www.numpy.org/
http://www.scipy.org/

Use	NumPy	for	Matrix	Manipulation
The	main	package	for	scientific	computing	in	Python	is	NumPy;	there	are	a	number	of
additional	specialized	packages,	but	most	of	these	are	based	on	the	functionality	offered
by	NumPy.	To	install	NumPy	and	SciPy	use	pip3:

pip3	install	numpy

pip3	install	scipy

Otherwise,	download	the	latest	version	here	for	32-bit	Windows	or	here	for	32-bit	Mac,
then	run	the	automated	installer.	If	you	have	a	64-bit	system	(including	OS	X	10.6	or
later),	you'll	need	to	install	a	64-bit	release	of	SciPy	(which	includes	Numpy),	available
here	or	here.	Debian/Ubuntu	users	can	get	NumPy	by	typing:		sudo	apt-get	install
python-numpy	

Among	many	other	possibilities,	NumPy	primarily	offers	an	easy	way	to	manipulate	data
stored	in	many	dimensions.	For	instance,	we	usually	think	of	a	two-dimensional	list	as	a
"matrix"	or	a	"table"	that	could	be	created	by	forming	a	"list	of	lists"	in	Python:

>>>	matrix	=	[[1,2,3],	[4,5,6],	[7,8,9]]

>>>	print(matrix)

[[1,	2,	3],	[4,	5,	6],	[7,	8,	9]]

>>>

We	could	then	refer	to	the	numbers	at	various	row/column	locations	using	index
numbers.	For	instance:

>>>	matrix[0][1]

2

>>>

Things	get	much	more	complicated,	however,	if	we	want	to	do	anything	more
complicated	with	this	two-dimensional	list.	For	instance,	what	if	we	wanted	to	multiply
every	entry	in	our	matrix	by	2?	That	would	require	looping	over	every	entry	in	every	list
inside	the	main	list.

Let's	create	this	same	list	using	NumPy:

Real	Python	Part	1:	Introduction	to	Python

189Use	NumPy	for	Matrix	Manipulation

http://www.numpy.org/
http://sourceforge.net/projects/numpy/files/latest/download
http://sourceforge.net/projects/numpy/files/NumPy/1.6.1/numpy-1.6.1-py2.7-python.org-macosx10.3.dmg/download
http://www.scipy.org/Download#head-f64942d62faddeb27278a2c735e81ef2a7349db0
http://www.lfd.uci.edu/~gohlke/pythonlibs/

>>>	from	numpy	import	array

>>>	matrix	=	array([[1,2,3],	[4,5,6],	[7,8,9]])

>>>	print(matrix)

[[1	2	3]

	[456]

	[789]]

>>>	matrix[0][1]

2

>>>	matrix[0,1]

2

>>>

In	this	case,	our	matrix	is	referred	to	as	a	two-dimensional	array.	An	array	is	different
from	a	list	because	it	can	only	hold	similar	entries	(for	instance,	all	numbers)	whereas	we
could	throw	any	sort	of	objects	together	into	a	list.	However,	there	are	many	more	ways
we	can	create	and	control	NumPy	arrays.	See	more	here	on	Numpy	arrays	vs	Python
lists.

NOTE:	In	NumPy,	each	dimension	in	an	array	is	called	an	axis.	Our	example
array	has	two	axes.	The	total	number	of	dimensions	or	axes	is	called	the	"rank"	of
a	matrix,	but	these	are	really	all	terms	for	describing	the	same	thing;	just	keep	in
mind	that	NumPy	often	refers	to	the	term	"axis"	to	mean	a	dimension	of	an	array.
Above,	we	saw	a	two-dimensional	array.	This	is	an	example	of	a	three-
dimensional	("three	axis")	array:

>>>	matrix	=		[

																[[1,2,3],	[4,5,6]],

																[[7,8,9],	[10,11,12]],

																[[13,14,15],	[16,17,18]]

]

>>>	matrix[0][1][2]

6

>>>

Another	benefit,	as	we	can	already	see,	is	that	NumPy	automatically	knows	to	display
our	two-dimensional	("two	axis")	array	in	two	dimensions	so	that	we	can	easily	read	its
contents.	We	also	have	two	options	for	accessing	an	entry,	either	by	the	usual	indexing
or	by	specifying	the	index	number	for	each	axis,	separated	by	commas.

Remember	to	include	the	main	set	of	square	brackets	when	creating	a	NumPy	array;
even	though	the		array()		has	parentheses,	including	square	brackets	is	necessary
when	you	want	to	type	out	the	array	entries	directly.	For	instance,	this	is	correct:		matrix
=	array([[1,2],[3,4]])	

Real	Python	Part	1:	Introduction	to	Python

190Use	NumPy	for	Matrix	Manipulation

http://www.scipy.org/scipylib/faq.html#what-advantages-do-numpy-arrays-offer-over-nested-python-lists

Meanwhile,	this	would	be	INCORRECT	because	it	is	missing	outer	brackets:		matrix	=
array([1,2],[3,4])	

We	have	to	type	out	the	array	this	way	because	we	could	also	have	given	a	different
input	to	create	the		array()		-	for	instance,	we	could	have	supplied	a	list	that	is	already
enclosed	in	its	own	set	of	square	brackets:

list	=	[[1,2],	[3,4]]

matrix	=	array(list)

In	this	case,	including	the	square	brackets	around	list	would	be	nonsensical.

Now,	multiplying	every	entry	in	our	matrix	is	as	simple	as	working	with	an	actual	matrix:

>>>	from	numpy	import	array

>>>	matrix	=	array([[1,2,3],	[4,5,6],	[7,8,9]])

>>>	print(matrix*2)

[[2		4		6]

	[8	10	12]

	[14	16	18]]

>>>

NOTE:	Even	if	you	have	no	interest	in	using	matrices	for	scientific	computing,	you
still	might	find	it	helpful	at	some	point	to	store	information	in	a	NumPy	array
because	of	its	many	helpful	properties.	For	instance,	perhaps	you	are	designing	a
game	and	need	an	easy	way	to	store,	view	and	manipulate	a	grid	of	values	with
rows	and	columns.	Rather	than	creating	a	list	of	lists	or	some	other	complicated
structure,	using	a	NumPy	array	is	a	simple	way	to	store	your	two-dimensional
data.

We	can	just	as	easily	perform	arithmetic	using	multi-dimensional	arrays	as	well:

>>>	second_matrix	=	array([[5,4,3],	[7,6,5],	[9,8,7]])

>>>	print(second_matrix	-	matrix)

[[4	2		0]

	[3	1	-1]

	[2	0	-2]]

>>>

If	you	want	to	perform	matrix	multiplication,	using	the	standard	*	symbol	will	perform
basic	multiplication	by	matching	corresponding	entries:

Real	Python	Part	1:	Introduction	to	Python

191Use	NumPy	for	Matrix	Manipulation

http://wiki.scipy.org/Tentative_NumPy_Tutorial

>>>	print(second_matrix	*	matrix)

[[5		8		9]

	[28	30	30]

	[63	64	63]]

>>>

To	calculate	an	actual	matrix	dot	product,	we	need	to	import	and	use	the		dot()	
function:

>>>	from	numpy	import	dot

>>>	print(dot(second_matrix,	matrix))

[[42		54		66]

	[66		84	102]

	[90	114	138]]

>>>

Two	matrices	can	also	be	stacked	vertically	using		vstack()		or	horizontally	using
	hstack()		if	their	axis	sizes	match:

>>>	from	numpy	import	vstack,	hstack

>>>	print(vstack([matrix,	second_matrix]))		#	add	second_matrix	below	matrix

[[1	2	3]

	[4	5	6]

	[7	8	9]

	[5	4	3]

	[7	6	5]

	[9	8	7]]

>>>	print(hstack([matrix,	second_matrix]))	#	add	second_matrix	next	to	matrix

[[1	2	3	5	4	3]

	[4	5	6	7	6	5]

	[7	8	9	9	8	7]]

>>>

For	basic	linear	algebra	purposes,	a	few	of	the	most	commonly	used	NumPy	array
properties	are	also	shown	here	briefly,	as	they	are	all	fairly	self-explanatory:

Real	Python	Part	1:	Introduction	to	Python

192Use	NumPy	for	Matrix	Manipulation

http://en.wikipedia.org/wiki/Dot_product

>>>	print(matrix.shape)	#	a	tuple	of	the	axis	lengths	(3	x	3)

(3,	3)

>>>	print(matrix.diagonal())	#	array	of	the	main	diagonal	entries

[1	5	9]

>>>	print(matrix.flatten())	#	a	flat	array	of	all	entries

[1	2	3	4	5	6	7	8	9]

>>>	print(matrix.transpose())	#	mirror-image	along	the	diagonal

[[1	4	7]

	[2	5	8]

	[3	6	9]]

>>>	print(matrix.min())	#	the	minimum	entry

1

>>>	print(matrix.max())	#	the	maximum	entry

9

>>>	print(matrix.mean())	#	the	average	value	of	all	entries

5.0

>>>	print(matrix.sum())	#	the	total	of	all	entries

45

>>>

We	can	also	reshape	arrays	with	the		reshape()		function	to	shift	entries	around:

>>>	print	matrix.reshape(9,1)

[[1]

	[2]

	[3]

	[4]

	[5]

	[6]

	[7]

	[8]

	[9]]

>>>

Of	course,	the	total	size	of	the	reshaped	array	must	match	the	original	array's	size.	For
instance,	we	couldn't	have	said		matrix.reshape(2,5)		because	there	would	have	been
one	extra	entry	created	with	nothing	left	to	fill	it.

The		reshape()		function	can	be	particularly	helpful	in	combination	with		arange()	,	which
is	NumPy's	equivalent	to		range()		except	that	a	NumPy	array	is	returned.	For	instance,
instead	of	typing	out	our	sequential	list	of	numbers	into	a	matrix,	we	could	have	imported
	arange()		and	then	reshaped	the	sequence	into	a	two-dimensional	matrix:

Real	Python	Part	1:	Introduction	to	Python

193Use	NumPy	for	Matrix	Manipulation

>>>	from	numpy	import	arange

>>>	matrix	=	arange(1,10)	#	an	array	of	numbers	1	through	9

>>>	print(matrix)

[1	2	3	4	5	6	7	8	9]

>>>	matrix	=	matrix.reshape(3,3)

>>>	print(matrix)

[[1	2	3]

	[4	5	6]

	[7	8	9]]

>>>

Again,	just	like	with		range()	,	using		arange(1,10)		will	return	the	numbers	1	through	9
because	we	stop	just	before	getting	to	the	last	number	in	the	range.

We	have	been	working	entirely	with	two-dimensional	arrays	since	they	are	both	the	most
commonly	used	and	the	easiest	to	grasp.	However,	just	as	we	can	create	a	"list	of	lists
of	lists",	NumPy	allows	us	to	create	arrays	of	higher	dimensions	as	well.	For	instance,
we	could	create	a	simple	three	dimensional	array	with	the	following:

>>>	array_3d	=	array([[[1,2],[3,4]],	[[5,6],[7,8]],	[[9,10],[11,12]]])

>>>	print(array_3d)

[[[1		2]

		[3		4]]

	[[5		6]

		[7		8]]

	[[9	10]

		[11	12]]]

>>>

An	easier	and	safer	way	to	create	this	particular	array	would	be	to		reshape()		and
	arange()	:

>>>	array_3d	=	arange(1,13)

>>>	array_3d	=	array_3d.reshape(3,2,2)

>>>

Even	if	a	multi-dimensional	array	doesn't	use	a	sequential	list	of	numbers,	sometimes	it's
easier	to	create	the	flat,	one-dimensional	list	of	entries	and	then		reshape()		the	array
into	the	desired	shape	instead	of	struggling	with	many	nested	sets	of	square	brackets.

Real	Python	Part	1:	Introduction	to	Python

194Use	NumPy	for	Matrix	Manipulation

NumPy	also	has	its	own	set	of	random	functionality,	which	is	particularly	useful	for
creating	multi-dimensional	arrays	of	random	numbers.	For	instance,	we	can	easily
create	a	3x3	matrix	of	random	numbers	like	so:

>>>	from	numpy	import	random

>>>	print(random.random([3,3]))

[[0.738695			0.52153367	0.58619601]

	[0.38232677	0.15941573	0.66080916]

	[0.61752779	0.60236187	0.5914662]]

>>>

NumPy	offers	much	more	functionality	than	the	basics	shown	here,	although	everything
covered	should	be	sufficient	for	most	tasks	involving	basic	array	storage	and
manipulation.	For	an	incredibly	thorough	and	mathematical	introduction,	see	the	Guide
to	NumPy.	There	is	also	a	good	Quick	Start	Tutorial	available	and	a	NumPy	"work	in
progress"	User	Guide.

For	scientists	and	engineers,	another	indispensable	tool	is	SciPy,	which	works	on	top	of
NumPy	to	offer	a	mind-numbingly	vast	set	of	tools	for	data	manipulation	and
visualization.	SciPy	is	a	very	powerful	and	very	extensive	collection	of	functions	and
algorithms	that	are	too	advanced	to	cover	in	an	introductory	course,	but	it's	worth
researching	if	you	have	a	particular	advanced	topic	already	in	mind.	Some	of	the	tools
available	include	functionality	for	tasks	involving	optimization,	integration,	statistical
tests,	signal	processing,	Fourier	transforms,	image	processing	and	more.	For	a	thorough
introduction	to	additional	functionality	available	in	SciPy,	there	is	a	reference	guide	that
covers	most	major	topics.	SciPy	is	availbale	for	download	via		pip3	.	Or	download	here
for	32-bit	and	here	for	64-bit	machines.

Review	exercises:

1.	 Create	a	3	x	3	NumPy	array	named		first_matrix		that	includes	the	numbers	3
through	11	by	using		arange()		and		reshape()	

2.	 Display	the	minimum,	maximum	and	mean	of	all	entries	in		first_matrix	
3.	 Square	every	entry	in		first_matrix		using	the		**		operator,	and	save	the	results	in

an	array	named		second_matrix	
4.	 Use		vstack()		to	stack		first_matrix		on	top	of		second_matrix		and	save	the	results

in	an	array	named		third_matrix	
5.	 Use		dot()		to	calculate	the	dot	product	of		third_matrix		by		first_matrix	
6.	 Reshape		third_matrix		into	an	array	of	dimensions	3	x	3	x	2

Real	Python	Part	1:	Introduction	to	Python

195Use	NumPy	for	Matrix	Manipulation

http://csc.ucdavis.edu/~chaos/courses/nlp/Software/NumPyBook.pdf
https://docs.scipy.org/doc/numpy-dev/user/quickstart.html
http://docs.scipy.org/doc/numpy/user/
http://docs.scipy.org/doc/scipy/reference/tutorial/index.html
http://sourceforge.net/projects/scipy/
http://www.scipy.org/Download#head-f64942d62faddeb27278a2c735e81ef2a7349db0

Real	Python	Part	1:	Introduction	to	Python

196Use	NumPy	for	Matrix	Manipulation

Use	matplotlib	for	Plotting	Graphs
The	matplotlib	library	works	with	NumPy	to	provide	tools	for	creating	a	wide	variety	of
two-dimensional	figures	for	visualizing	data.	If	you	have	ever	created	graphs	in
MATLAB,	matplotlib	in	many	ways	directly	recreates	this	experience	within	Python.
Figures	can	then	be	exported	to	various	formats	in	order	to	save	pictures	and/or
documents.

You	will	first	need	to	download	and	install	both	NumPy	(see	the	previous	section)	and
matplotlib:

pip3	install	numpy

pip3	install	matplotlib

Or,	Windows	and	OS	X	users	can	download	an	automated	matplotlib	installer	here.

Debian/Linux	users	can	get	matplotlib	by	typing	the	command:		sudo	apt-get	install
python-matplotlib	

There	are	a	few	modules	included	in	the	matplotlib	package,	but	we	will	only	work	with
the	basic	plotting	module,	pyplot.	We	can	import	this	functionality	as	follows:

from	matplotlib	import	pyplot	as	plt

This	part	of	the	code	might	take	a	little	time	to	run	-	there	is	a	lot	of	code	being	imported
with	this	line!	We	decided	to	rename	pyplot	to	the	name	"plt"	to	save	a	little	space	and
effort	since	we'll	be	typing	it	a	lot.	Plotting	a	simple	graph	is	in	fact	quite	simple	to	do.

Try	out	this	short	script:

from	matplotlib	import	pyplot	as	plt

plt.plot([1,2,3,4,5],	[2,4,6,8,10])

plt.show()

Real	Python	Part	1:	Introduction	to	Python

197Use	matplotlib	for	Plotting	Graphs

http://matplotlib.org/
https://github.com/matplotlib/matplotlib/downloads
http://matplotlib.org/1.3.1/api/pyplot_api.html

We	created	a	plot,	supplying	a	list	of	x-coordinate	points	and	a	matching	list	of	y-
coordinate	points.	When	we	call		plt.show()	,	a	new	window	appears,	displaying	a	graph
of	our	five	(x,y)	points.	Our	interactive	window	is	essentially	locked	while	this	plot	window
is	open,	and	we	can	only	end	the	script	and	return	to	a	new	prompt	in	the	interactive
window	once	we've	closed	the	graph.

NOTE:	We'll	stick	to	using	scripts	to	plot	rather	than	typing	commands	into	the
interactive	window.	Using	Windows,	you	should	also	have	no	problems	copying
this	code	line-by-line	into	the	interactive	window.	However,	newer	versions	of	OS
X	have	difficulty	responding	to		show()	.	Meanwhile,	IDLE	in	Linux	can	correctly
	show()		a	plot	from	an	interactive	window,	but	then	IDLE	will	need	to	be	restarted.
We'll	discuss	other	options	and	alternatives	for	displaying	and	interacting	with
plots	at	the	end	of	this	section.

When	plotting,	we	don't	even	have	to	specify	the	horizontal	axis	points;	if	we	don't
include	any,	matplotlib	will	assume	that	we	want	to	graph	our	y	values	against	a
sequential	x	axis	increasing	by	one:

Real	Python	Part	1:	Introduction	to	Python

198Use	matplotlib	for	Plotting	Graphs

from	matplotlib	import	pyplot	as	plt

plt.plot([2,4,6,8,10])

plt.show()

However,	this	isn't	exactly	the	same	graph	because,	as	always,	Python	begins	counting
at	0	instead	of	1,	which	is	what	we	now	see	for	the	horizontal	axis	values	as	well.

There	is	a	optional	"formatting"	argument	that	can	be	inserted	into		plot()		after
specifying	the	points	to	be	plotted.	This	argument	specifies	the	color	and	style	of	lines	or
points	to	draw.	Unfortunately,	the	standard	is	borrowed	from	MATLAB	and	(compared	to
most	Python)	the	formatting	is	not	very	intuitive	to	read	or	remember.	The	default	value
is	"solid	blue	line",	which	would	be	represented	by	the	format	string		b-	.	If	we	wanted	to
plot	green	circular	dots	connected	by	solid	lines	instead,	we	would	use	the	format	string
	g-o		like	so:

from	matplotlib	import	pyplot	as	plt

plt.plot([2,4,6,8,10],	"g-o")

plt.show()

Real	Python	Part	1:	Introduction	to	Python

199Use	matplotlib	for	Plotting	Graphs

SEE	ALSO:	For	reference,	the	full	list	of	possible	formatting	combinations	can	be
found	here.

Plotting	wouldn't	be	very	convenient	if	we	had	to	organize	everything	into	lists	ourselves
first;	matplotlib	works	with	NumPy	to	accept	arrays	as	well.	(Even	if	you	can	get	away
with	using	a	basic	list,	it's	a	good	idea	to	stick	with	arrays	in	case	you	later	discover	that
you	do	need	to	modify	the	numbers	in	some	way.)	For	instance,	to	create	our	previous
graph,	we	could	use		arange()		to	return	an	array	of	the	same	numbers:

from	matplotlib	import	pyplot	as	plt

from	numpy	import	arange

plt.plot(arange(2,12,2),	"g-o")

plt.show()	#	displays	the	same	graph	as	the	previous	example

Here,	we	used	the	optional	third	argument	of		arange()	,	which	specifies	the	step.	The
step	is	the	amount	by	which	to	increase	each	subsequent	number,	so	saying
	arange(2,12,2)		gives	us	an	array	of	numbers	beginning	at	2,	increasing	by	2	every
step,	and	ending	before	12.	(In	fact,	this	third	step	argument	works	exactly	the	same	way
for	the	built-in		range()		function	as	well.)

Real	Python	Part	1:	Introduction	to	Python

200Use	matplotlib	for	Plotting	Graphs

http://matplotlib.sourceforge.net/api/pyplot_api.html#matplotlib.pyplot.plot

To	plot	multiple	sets	of	points,	we	add	them	to		plot()		as	additional	arguments:

from	matplotlib	import	pyplot	as	plt

from	numpy	import	arange

x_points	=	arange(1,21)

baseline	=	arange(0,20)

plt.plot(x_points,	baseline**2,	"g-o",	x_points,	baseline,	"r-^")

plt.show()

This	isn't	a	very	pretty	graph,	though.	Fortunately,	there	are	plenty	of	things	we	can	do	to
improve	the	layout	and	formatting.	First	of	all,	let's	change	the	axes	so	that	our	points
don't	go	off	the	corners	of	the	graph:

from	matplotlib	import	pyplot	as	plt

from	numpy	import	arange

x_points	=	arange(1,21)

baseline	=	arange(0,20)

plt.plot(x_points,	baseline**2,	"g-o",	x_points,	baseline,	"r-^")

plt.axis([0,	21,	0,	400])

plt.show()

Real	Python	Part	1:	Introduction	to	Python

201Use	matplotlib	for	Plotting	Graphs

We	define	the	boundaries	of	the	displayed	axes	with	a	list	of	the	four	points	in	the	order
[min	X,	max	X,	min	Y,	max	Y]	-	in	this	case,	we	increased	the	maximum	value	that	the	x-
axis	extended	from	20	to	21	so	that	the	last	two	points	don't	appear	halfway	off	the
graph.

Now	we're	starting	to	get	somewhere	useful,	but	nothing	is	labeled	yet.	Let's	add	a	main
title,	a	legend	and	some	labels	for	the	axes:

from	matplotlib	import	pyplot	as	plt

from	numpy	import	arange

x_points	=	arange(1,21)

baseline	=	arange(0,20)

plt.plot(x_points,	baseline**2,	"g-o",	x_points,	baseline,	"r-^")

plt.axis([0,	21,	0,	400])

plt.title("Amount	of	Python	learned	over	time")

plt.xlabel("Days")

plt.ylabel("Standardized	knowledge	index	score")

plt.legend(("Real	Python",	"Other	course"),	loc=2)

plt.show()

Real	Python	Part	1:	Introduction	to	Python

202Use	matplotlib	for	Plotting	Graphs

There	are	many	more	complicated	ways	to	create	a	legend,	but	the	simplest	is	to	supply
a	tuple	that	lists	the	labels	to	be	applied	to	all	the	plotted	points	in	order.	We	specified
	loc=2		in	the	legend	because	we	want	the	legend	to	appear	in	the	top	left	corner,	while
the	default	is	for	the	legend	to	appear	in	the	top	right	corner.	Unless	you're	making
graphs	very	frequently,	it's	near	impossible	to	remember	the	particular	detail	that		loc=2	
corresponds	to	the	top	left	corner	along	with	so	many	other	cryptic	formatting	details;	the
best	thing	to	do	in	this	situation	is	to	search	the	web	for	a	relevant	term	like	"matplotlib
legend".	In	this	case,	you'll	quickly	be	directed	to	the	matplotlib	legend	guide	that	offers,
among	many	other	details,	a	table	providing	legend	location	codes.

Another	frequently	used	type	of	plot	in	basic	data	visualization	is	a	bar	chart.	Let's	start
with	a	very	simple	example	of	a	bar	chart,	which	uses	the		bar()		plotting	function:

from	matplotlib	import	pyplot	as	plt

from	numpy	import	arange

plt.bar(arange(0,10),	arange(1,21,2))

plt.show()

Real	Python	Part	1:	Introduction	to	Python

203Use	matplotlib	for	Plotting	Graphs

http://matplotlib.sourceforge.net/users/legend_guide.html

The	first	argument	takes	a	list	or	an	array	of	the	x-axis	locations	for	each	bar's	left	edge;
in	this	case,	we	placed	the	left	sides	of	our	bars	along	the	numbers	from	0	through	9.
The	second	argument	of		bar()		is	a	list	or	an	array	of	the	ordered	bar	values;	here	we
supplied	the	odd	numbers	1	through	19	for	our	bar	heights.	The	bars	automatically	have
widths	of	1,	although	this	can	also	be	changed	by	setting	the	optional	width	argument:

from	matplotlib	import	pyplot	as	plt

from	numpy	import	arange

plt.bar(arange(0,10),	arange(1,21,2),	width=.5)

plt.show()

Real	Python	Part	1:	Introduction	to	Python

204Use	matplotlib	for	Plotting	Graphs

Often	we	will	want	to	compare	two	or	more	sets	of	bars	on	a	single	plot.	To	do	this,	we
have	to	space	them	out	along	the	x-axis	so	that	each	set	of	bars	appears	next	to	each
other.	We	can	multiply	and		arange()		by	some	factor	in	order	to	leave	space,	since	in
this	case	we	care	more	about	placing	our	bars	in	the	correct	order	rather	than	specifying
where	on	the	x-axis	they	go:

from	matplotlib	import	pyplot	as	plt

from	numpy	import	arange

plt.bar(arange(0,10)*2,	arange(1,21,2))

plt.bar(arange(0,10)*2	+	1,	arange(1,31,3),	color="red")

plt.show()

Real	Python	Part	1:	Introduction	to	Python

205Use	matplotlib	for	Plotting	Graphs

For	the	x-axis	of	the	first	set	of	bars,	we	supplied	the	even	numbers	0	through	18	by
multiplying	every	number	in	our		arange()		by	2.	This	allows	us	to	leave	some	space	for
the	second	set	of	bars,	which	we	place	along	each	of	the	even	numbers	1	through	19.

However,	the	automatic	numbering	provided	along	the	x-axis	is	meaningless	now.	We
can	change	this	by	giving	locations	to	label	along	the	x-axis	with	the		xticks()		function.
While	we're	at	it,	let's	also	space	out	each	pair	of	bars,	leaving	a	blank	space	between
each	grouping	so	that	the	pairs	are	more	apparent:

from	matplotlib	import	pyplot	as	plt

from	numpy	import	arange

plt.bar(arange(0,10)*3,	arange(1,21,2))

plt.bar(arange(0,10)*3	+	1,	arange(1,31,3),	color="red")

plt.xticks(arange(0,10)*3	+	1,	arange(1,11),	fontsize=20)

plt.show()

Real	Python	Part	1:	Introduction	to	Python

206Use	matplotlib	for	Plotting	Graphs

Since	we	wanted	to	show	the	x-axis	labels	in	between	each	of	our	pairs	of	bars,	we
specified	the	left	side	of	the	second	(red)	set	of	bars	as	the	position	to	show	the	label.
We	then	gave	the	numbers	1	through	10	as	the	actual	labels	to	display;	we	could	just	as
easily	have	used	a	list	of	strings	as	labels	as	well.	Finally,	we	also	specified	a	larger	font
size	for	better	readability.

Again,	we	can	also	add	axis	labels,	a	graph	title,	a	legend,	etc.	in	the	same	way	as	with
any	other	plot:

from	matplotlib	import	pyplot	as	plt

from	numpy	import	arange

plt.bar(arange(0,10)*3,	arange(1,21,2))

plt.bar(arange(0,10)*3	+	1,	arange(1,31,3),	color="red")

plt.xticks(arange(0,10)*3	+	1,	arange(1,11),	fontsize=20)

plt.title("Coffee	consumption	due	to	sleep	deprivation")

plt.xlabel("Group	number")

plt.ylabel("Cups	of	coffee	consumed")

plt.legend(("Control	group",	"Test	group"),	loc=2)

plt.show()

Real	Python	Part	1:	Introduction	to	Python

207Use	matplotlib	for	Plotting	Graphs

Another	commonly	used	type	of	graph	is	the	histogram,	which	is	notoriously	difficult	to
create	in	other	programs	like	Microsoft	Excel.	We	can	make	simple	histograms	very
easily	using	matplotlib	with	the		hist()		function,	which	we	supply	with	a	list	(or	array)	of
values	and	the	number	of	bins	to	use.	For	instance,	we	can	create	a	histogram	of	10,000
normally	distributed	(Gaussian)	random	numbers	binned	across	20	possible	bars	with
the	following,	which	uses	NumPy's		random.randn()		function	to	generate	an	array	of
normal	random	numbers:

from	matplotlib	import	pyplot	as	plt

from	numpy	import	random

plt.hist(random.randn(10000),	20)

plt.show()

Real	Python	Part	1:	Introduction	to	Python

208Use	matplotlib	for	Plotting	Graphs

Often	we	want	to	add	some	text	to	a	graph	or	chart.	There	are	a	number	of	ways	to	do
this,	but	adding	graph	annotations	is	a	very	detailed	topic	that	can	quickly	become	case-
specific.	For	one	short	example,	let's	point	out	the	expected	average	value	on	our
histogram,	complete	with	an	arrow:

from	matplotlib	import	pyplot	as	plt

from	numpy	import	random

plt.hist(random.randn(10000),	20)

plt.annotate("expected	mean",	xy=(0,	0),	xytext=(0,	300),	ha="center",

				arrowprops=dict(facecolor='black'),	fontsize=20)

plt.show()

Real	Python	Part	1:	Introduction	to	Python

209Use	matplotlib	for	Plotting	Graphs

When	we	call		annotate()	,	first	we	provide	the	string	of	text	that	we	want	to	appear.	This
is	followed	by	the	location	to	be	annotated	(i.e.,	where	the	arrow	points)	and	the	location
of	the	text.	We	optionally	say	that	the	text	should	be	centered	in	terms	of	horizontal
alignment	using		ha="center"	,	and	then	we	add	an	"arrow	prop"	that	will	point	from	the
text	(centered	at	the	point	xytext)	to	the	annotation	point	(centered	at	the	point	xy).	This
arrow	takes	a	dictionary	of	definitions,	although	we	only	provide	one	-	namely	that	the
arrow	should	be	colored	black.	Finally,	we	specify	a	large	font	size	of	20.

We	can	even	include	mathematical	expressions	in	our	text	by	using	a	writing	style	called
TeX	markup	language.	This	will	be	familiar	to	you	if	you've	ever	used	LaTeX,	although	a
brief	introduction	for	use	in	matplotlib	can	be	found	here.	As	a	simple	example,	let's
make	our	annotation	a	little	more	scientific	by	adding	the	symbol	Î¼	with	a	"hat"	over-line
to	show	the	predicted	mean	value:

Real	Python	Part	1:	Introduction	to	Python

210Use	matplotlib	for	Plotting	Graphs

http://matplotlib.org/users/mathtext.html#mathtext-tutorial

from	matplotlib	import	pyplot	as	plt

from	numpy	import	random

plt.hist(random.randn(10000),	20)

plt.annotate(r"$\hat	\mu	=	0$",	xy=(0,	0),	xytext=(0,	300),	ha="center",

				arrowprops=dict(facecolor='black'),	fontsize=20)

plt.show()

The	text	expression	is	prefaced	with	an		r		to	let	Python	know	that	it's	a	"raw"	string,
meaning	that	the	backslashes	should	not	be	interpreted	as	special	characters.	Then	the
full	TeX	string	is	enclosed	in	dollar	signs.	Again,	a	full	overview	of	TeX	expressions	is
beyond	the	scope	of	this	course,	but	it's	usually	a	fairly	simple	matter	to	find	a	similar
example	to	what	you	want	to	create	and	then	modify	it	to	suit	your	needs.

Once	we	have	a	chart	created,	chances	are	that	we'll	want	to	be	able	to	save	it
somewhere.	It	turns	out	that	this	process	is	even	easier	than	writing	other	kinds	of	files,
because	matplotlib	allows	us	to	save	PNG	images,	SVG	images,	PDF	documents	and
PostScript	files	by	simply	specifying	the	type	of	file	to	use	and	then	calling	the
	savefig()		function.	For	instance,	instead	of	displaying	our	histogram	on	the	screen,
let's	save	it	out	as	both	a	PNG	image	and	a	PDF	file	to	our	chapter	14	exercise	folder:

Real	Python	Part	1:	Introduction	to	Python

211Use	matplotlib	for	Plotting	Graphs

from	matplotlib	import	pyplot	as	plt

from	numpy	import	random

plt.hist(random.randn(10000),	20)

path	=	"C:/book1-exercises/chp14"

plt.savefig(path	+	"histogram.png")

plt.savefig(path	+	"histogram.pdf")

NOTE:	When	using	pyplot,	if	you	want	to	both	save	a	figure	and	display	it	on	the
screen,	make	sure	that	you	save	it	first	before	displaying	it!	Because		show()	
pauses	your	code	and	because	closing	the	display	window	destroys	the	graph,
trying	to	save	the	figure	after	calling		show()		will	only	result	in	an	empty	file.

Finally,	when	you're	initially	tweaking	the	layout	and	formatting	of	a	particular	graph,	you
might	want	to	change	parts	of	the	graph	without	re-running	an	entire	script	to	re-display
the	graph.	Unfortunately,	on	some	systems	matplotlib	doesn't	work	well	with	IDLE	when
it	comes	to	creating	an	interactive	process,	but	there	are	a	couple	options	available	if
you	do	want	this	functionality.	One	simple	work-around	is	simply	to	save	out	a	script
specifically	to	create	the	graph,	then	continually	modify	and	rerun	this	script.	Another
possibility	is	to	install	the	IPython	package,	which	creates	an	"interactive"	version	of
Python	that	will	allow	you	to	work	with	a	graphics	window	that's	already	open.	A	simpler
but	less	user-friendly	solution	is	to	run	Python	from	the	Windows	command	line	or
Mac/Linux	Terminal	(see	the	Interlude:	Install	Packages	section	for	instructions	on	how
to	do	this).	In	either	case,	you	will	then	be	able	to	turn	on	matplotlib's	"interactive	mode"
for	a	given	plot	using	the		ion()		function,	like	so:

>>>	from	matplotlib	import	pyplot	as	plt

>>>	plt.ion()

>>>

You	can	then	create	a	plot	as	usual,	without	having	to	call	the		show()		function	to
display	it,	and	then	make	changes	to	the	plot	while	it	is	still	being	displayed	by	typing
commands	into	the	interactive	window.

Although	we've	covered	the	most	commonly	used	basics	for	creating	plots,	the
functionality	offered	in	matplotlib	is	incredibly	extensive.	If	you	have	an	idea	in	mind	for	a
particular	type	of	data	visualization,	no	matter	how	complex,	the	best	way	to	get	started
is	usually	to	browse	the	matplotlib	gallery	for	something	that	looks	similar	and	then	make
the	necessary	modifications	to	the	example	code.

Real	Python	Part	1:	Introduction	to	Python

212Use	matplotlib	for	Plotting	Graphs

http://ipython.org/
http://matplotlib.sourceforge.net/examples/index.html
http://matplotlib.sourceforge.net/gallery.html

Review	exercises:

1.	 Recreate	all	the	graphs	shown	in	this	section	by	writing	your	own	scripts	without
referring	to	the	provided	code

2.	 It	is	a	well-documented	fact	that	the	number	of	pirates	in	the	world	is	correlated	with
a	rise	in	global	temperatures.	Write	a	script	pirates.py	that	visually	examines	this
relationship:

Read	in	the	file	pirates.csv	from	the	Chapter	14	practice	files	folder.
Create	a	line	graph	of	the	average	world	temperature	in	degrees	Celsius	as	a
function	of	the	number	of	pirates	in	the	world	-	i.e.,	graph	Pirates	along	the	x-
axis	and	Temperature	along	the	y-axis.
Add	a	graph	title	and	label	your	graph's	axes.
Save	the	resulting	graph	out	as	a	PNG	image	file.
Bonus:	Label	each	point	on	the	graph	with	the	appropriate	Year;	you	should	do
this	"programmatically"	by	looping	through	the	actual	data	points	rather	than
specifying	the	individual	position	of	each	annotation.

Real	Python	Part	1:	Introduction	to	Python

213Use	matplotlib	for	Plotting	Graphs

http://www.venganza.org/2008/04/pirates-temperature/

Graphical	User	Interface
We've	made	a	few	pretty	pictures	with	matplotlib	and	manipulated	some	files,	but
otherwise	we	have	limited	ourselves	to	programs	that	are	generally	invisible	and
occasionally	spit	out	text.	While	this	might	be	good	enough	for	most	purposes,	there	are
some	programs	that	could	really	benefit	from	letting	the	user	"point	and	click"	-	say,	a
script	you	wrote	to	rename	a	folder's	worth	of	files	that	your	technologically	impaired
friend	now	wants	to	use.	For	this,	we	need	to	design	a	graphical	user	interface	(referred
to	as	a	GUI	and	pronounced	"gooey"	-	really).

When	we	talk	about	GUIs,	we	usually	mean	a	full	GUI	application	where	everything
about	the	program	happens	inside	a	window	full	of	visual	elements	(as	opposed	to	a
text-based	program).	Designing	good	GUI	applications	can	be	incredibly	difficult
because	there	are	so	many	moving	parts	to	manage;	all	the	pieces	of	an	application
constantly	have	to	be	listening	to	each	other	and	to	the	user,	and	you	have	to	keep
updating	all	the	visual	elements	so	that	the	user	only	sees	the	most	recent	version	of
everything.

Instead	of	diving	right	into	the	complicated	world	of	making	GUI	applications,	let's	first
add	some	individual	GUI	elements	to	our	code.	That	way,	we	can	still	improve	the
experience	for	the	person	using	our	program	without	having	to	spend	endless	hours
designing	and	coding	it.

Real	Python	Part	1:	Introduction	to	Python

214Graphical	User	Interface

Add	GUI	elements	with	EasyGUI
We'll	start	out	in	GUI	programming	with	a	module	named	EasyGUI.	First,	you'll	need	to
install	this	package	via	pip3:

$	pip3	install	easygui

Or	download	and	install	manually:

Windows:	Download	the	compressed	.zip	file,	unzip	it,	and	install	the	package	by
running	Python	on	setup.py	from	the	command	prompt	as	described	in	the	installation
section.

OS	X:	Download	the	compressed	.tar.gz	file,	decompress	it,	then	install	the	package	by
running	Python	on	setup.py	from	Terminal	as	described	in	the	installation	section.

Debian/Linux:		sudo	apt-get	install	python-easygui	

EasyGUI	is	different	from	other	GUI	modules	because	it	doesn't	rely	on	events.	Most
GUI	applications	are	event-driven,	meaning	that	the	flow	of	the	program	depends	on
actions	taken	by	the	user;	this	is	usually	what	makes	GUI	programming	so	complicated,
because	any	object	that	might	change	in	response	to	the	user	has	to	"listen"	for	different
"events"	to	occur.	By	contrast,	EasyGUI	is	structured	linearly	like	any	function;	at	some
point	in	our	code,	we	display	some	visual	element	on	the	screen,	use	it	to	take	input
from	the	user,	then	return	that	user's	input	to	our	code	and	proceed	as	usual.

Let's	start	by	importing	the	functionality	from	EasyGUI	into	the	interactive	window	and
displaying	a	simple	message	box:

>>>	from	easygui	import	*

>>>	msgbox("Hello,	EasyGUI!",	"This	is	a	message	box",	"Hi	there")

Real	Python	Part	1:	Introduction	to	Python

215Add	GUI	elements	with	EasyGUI

http://easygui.sourceforge.net/
http://sourceforge.net/projects/easygui/
http://sourceforge.net/projects/easygui/

'Hi	there'

>>>

When	you	run	the	second	line	of	code,	something	like	the	window	above	should	have
appeared.

On	Mac,	it	will	look	more	like	this:

And	in	Ubuntu:

Real	Python	Part	1:	Introduction	to	Python

216Add	GUI	elements	with	EasyGUI

If	nothing	appears,	see	the	box	below.	For	the	sake	of	the	majority,	I'll	be	sticking	to
screenshots	from	a	Windows	GUI	perspective	only.

We	used	the		msgbox()		to	generate	a	new	box	that	includes	a	message,	a	window	title,
and	button	text	that	we	provided,	in	that	order.	(The	default	value	for	the	button	text
would	be	"OK"	if	we	hadn't	provided	a	third	argument.)	When	the	user	clicks	the	button,
EasyGUI	returns	the	value	of	the	button's	text,	and	we're	back	to	the	interactive	prompt.

NOTE:	EasyGUI	uses	a	toolkit	called	Tkinter,	which	we	will	get	to	use	in	the	next
section.	IDLE	uses	Tkinter	to	run	as	well.	You	might	run	into	problems	with
freezing	windows,	etc.,	because	of	disagreements	between	the	new	windows	you
create	and	the	IDLE	window	itself.	If	you	think	this	might	be	happening,	you	can
always	try	running	your	code	or	script	by	running	Python	from	the	command
prompt	(Windows)	or	Terminal	(Mac/Linux).

Notice	that	when	we	ran	the	previous	code,	clicking	the	button	returned	the	value	that
was	in	the	button	text	back	to	the	interactive	window.	In	this	case,	returning	the	text	of
the	button	clicked	by	the	user	wasn't	that	informative,	but	we	can	also	provide	more	than
one	choice	by	using	a		buttonbox()		and	providing	a	tuple	of	button	values:

>>>	choices	=	("Blue",	"Yellow",	"Auuugh!")

>>>	buttonbox("What	is	your	favorite	color?",	"Choose	wisely...",	choices)

'Auuugh!'

>>>

Now	we	were	able	to	tell	that	our	user	chose	"Auuugh!"	as	the	favorite	color,	and	we
could	set	that	return	value	equal	to	a	variable	to	be	used	later	in	our	code.

Real	Python	Part	1:	Introduction	to	Python

217Add	GUI	elements	with	EasyGUI

There	are	a	number	of	other	ways	to	receive	input	from	the	user	through	easyGUI	to	suit
your	needs.	For	starters,	try	out	the	following	lines	a	few	times	each	and	see	what
values	they	return	based	on	the	different	choices	you	select:

>>>	choices	=	("Blue",	"Yellow",	"Auuugh!")	#	tuple	of	choices

>>>	title	=	"Choose	wisely..."	#	window	title

>>>	indexbox("What	is	your	favorite	color?",	title,	choices)

>>>	choicebox("What	is	your	favorite	color?",	title,	choices)

>>>	multchoicebox("What	are	your	favorite	colors?",	title,	choices)

>>>	enterbox("What	is	your	favorite	color?",	title)

>>>	passwordbox("What	is	your	favorite	color?	(I	won't	tell.)",	title)

>>>	textbox("Please	describe	your	favorite	color:")

Another	useful	feature	provided	by	EasyGUI	is	a	simple	way	for	the	user	to	select	a	file
through	a	standard	file	dialog	box:

>>>	fileopenbox("message",	"title",	"*.txt")

The	third	argument	we	passed	to		fileopenbox()		was	the	type	of	file	we	want	the	user	to
open,	which	we	specify	in	a	string	by	using	a	"wildcard"	symbol	followed	by	the	name	of
the	file	extension.	This	automatically	filters	the	viewable	files	to	those	that	match	the
".txt"	extension,	although	the	user	still	has	the	option	to	change	this	box	to	"All	files	(.*)"
and	select	any	type	of	file.

Real	Python	Part	1:	Introduction	to	Python

218Add	GUI	elements	with	EasyGUI

Notice	how	we	still	provided	a	"message"	and	a	"title"	even	though	they	both	appeared	in
the	title	bar;	typically	you	will	just	want	to	pass	an	empty	string	to	one	of	these,	since	a
single	title	is	enough.	If	we	look	up	the	easyGUI	documentation	to	find	out	the	names	of
the	variables	used	by	the	function		fileopenbox()	,	we	can	also	provide	only	specific
arguments	by	directly	assigning	values	to	the	variable	names,	like	so:

>>>	fileopenbox(title="Open	a	file...",	default="*.txt")

Within	a	"file	open"	dialog	box,	try	typing	in	the	name	of	a	file	that	doesn't	exist	and
opening	it;	the	dialog	box	won't	let	you!	This	is	one	less	thing	that	we	have	to	worry
about	programming	into	our	code.	The	user	can	still	hit	cancel,	in	which	case		None		is
returned	to	represent	a	lack	of	any	object.	Otherwise,		fileopenbox()		gives	us	a	string
representing	the	full	path	to	the	selected	file.	Keep	in	mind	that	we	aren't	actually
opening	this	file	in	any	way;	we're	simply	presenting	the	user	with	the	ability	to	select	a
file	for	opening,	but	the	rest	of	the	code	is	still	up	to	us.

There	is	also	a		diropenbox()		function	for	letting	the	user	choose	a	folder	rather	than	an
individual	file;	in	this	case,	the	optional	third	argument	can	tell	the	dialog	box	which
directory	to	have	open	by	default.

Finally,	there	is	a		filesavebox()		that	works	similarly	to		fileopenbox()		except	that	it
allows	the	user	to	select	a	file	to	be	"saved"	rather	than	opened.	This	dialog	box	also
confirms	that	the	user	wants	to	overwrite	the	file	if	the	chosen	name	is	the	same	as	a	file
that	already	exists.	Again,	no	actual	saving	of	files	is	happening	-	that's	still	up	to	us	to
program	once	we	receive	the	file	name	from	easyGUI.

In	practice,	one	of	the	most	difficult	problems	when	it	comes	to	letting	the	user	select
files	is	what	to	do	if	the	user	cancels	out	of	the	window	when	you	need	to	have	selected
a	file.	One	simple	solution	is	to	display	the	dialog	in	a	loop	until	the	user	finally	does
select	a	file,	but	that's	not	very	nice	-	after	all,	maybe	your	user	had	a	change	of	heart
and	really	doesn't	want	to	run	whatever	code	comes	next.

Instead,	you	should	plan	to	handle	rejection	gracefully.	Depending	on	what	exactly
you're	asking	of	the	user,	most	of	the	time	you	should	use		exit()		to	end	the	program
without	a	fuss	when	the	user	cancels.	(If	you're	running	the	script	in	IDLE,		exit()		will
also	close	the	current	interactive	window.	It's	very	thorough.)

Let's	get	some	practice	with	how	to	handle	file	dialogs	by	writing	a	simple,	usable
program.	We	will	guide	the	user	(with	GUI	elements)	through	the	process	of	opening	a
PDF	file,	rotating	its	pages	in	some	way,	and	then	saving	the	rotated	file	as	a	new	PDF:

Real	Python	Part	1:	Introduction	to	Python

219Add	GUI	elements	with	EasyGUI

from	easygui	import	*

from	pyPDF2	import	PdfFileReader,	PdfFileWriter

#	let	the	user	choose	an	input	file

input_file_name	=	fileopenbox("",	"Select	a	PDF	to	rotate...",	"*.pdf")

if	input_file_name	is	None:	#	exit	on	"Cancel"

				exit()

#	let	the	user	choose	an	amount	of	rotation

rotate_choices	=	(90,	180,	270)

message	=	"Rotate	the	PDF	clockwise	by	how	many	degrees?"

degrees	=	buttonbox(message,	"Choose	rotation...",	rotate_choices)

#	let	the	user	choose	an	output	file

output_file_name	=	filesavebox("",	"Save	the	rotated	PDF	as...",	"*.pdf")

while	input_file_name	==	output_file_name:	#	cannot	use	same	file	as	input

				msgbox("Cannot	overwrite	original	file!",	"Please	choose	another	file...")

				output_file_name	=	filesavebox("",	"Save	the	rotated	PDF	as...",	"*.pdf")

if	output_file_name	is	None:

				exit()	#	exit	on	"Cancel"

#	read	in	file,	perform	rotation	and	save	out	new	file

input_file	=	PdfFileReader(open(input_file_name,	"rb"))

output_PDF	=	PdfFileWriter()

for	page_num	in	range(0,	input_file.getNumPages()):

				page	=	input_file.getPage(page_num)

				page	=	page.rotateClockwise(int(degrees))

				output_PDF.addPage(page)

output_file	=	open(output_file_name,	"wb")

output_PDF.write(output_file)

output_file.close()

Besides	the	use	of		exit()	,	you	should	already	be	familiar	with	all	the	code	in	this	script.
The	tricky	part	is	the	logic	-	i.e.,	how	to	put	all	the	different	pieces	together	to	create	a
seamless	experience	for	the	user.	For	longer	programs,	it	can	be	helpful	to	draw	out
diagrams	by	hand	using	boxes	and	arrows	to	represent	how	we	want	the	user	to
experience	the	different	parts	of	our	program;	it's	a	good	idea	to	do	this	even	before	you
start	writing	any	code	at	all.	Let's	represent	how	this	script	works	in	an	outline	form	in
terms	of	what	we	display	to	the	user:

1.	 Let	the	user	select	an	input	file
2.	 If	the	user	canceled	the	"open	file"	dialog	(None	was	returned),	then	exit	the

program
3.	 Let	the	user	select	a	rotation	amount

Real	Python	Part	1:	Introduction	to	Python

220Add	GUI	elements	with	EasyGUI

[No	alternative	choice	here;	the	user	must	click	a	button]
4.	 Let	the	user	select	an	output	file
5.	 If	the	user	tries	to	save	a	file	with	the	same	name	as	the	input	file:

Alert	the	user	of	the	problem	with	a	message	box
Return	to	step	4

6.	 If	the	user	canceled	the	"save	file"	dialog	(None	was	returned),	then	exit	the
program

The	final	steps	are	the	hardest	to	plan	out.	After	step	4,	since	we	already	know	(from
step	2)	that	the	input	file	isn't		None	,	we	can	check	whether	the	output	file	and	input	file
match	before	checking	for	the	canceled	dialog.	Then,	based	on	the	return	value	from	the
dialog,	we	can	check	for	whether	or	not	the	user	canceled	the	dialog	box	after	the	fact.

Review	exercises:

1.	 Recreate	the	three	different	GUI	elements	pictured	in	this	section	by	writing	your
own	scripts	without	referring	to	the	provided	code

2.	 Save	each	of	the	values	returned	from	these	GUI	elements	into	new	variables,	then
print	each	of	them

3.	 Test	out		indexbox()	,		choicebox()	,		multchoicebox()	,		enterbox()	,		passwordbox()	
and		textbox()		to	see	what	GUI	elements	they	produce;	you	can	use	the		help()	
function	to	read	more	about	each	function	in	the	interactive	window	-	for	instance,
type		import	easygui		then		help(easygui.indexbox)	

Real	Python	Part	1:	Introduction	to	Python

221Add	GUI	elements	with	EasyGUI

Assignment:	Use	GUI	elements	to	help	a
user	modify	files
Write	a	script	partial_PDF.py	that	extracts	a	specific	range	of	pages	from	a	PDF	file
based	on	file	names	and	a	page	range	supplied	by	the	user.	The	program	should	run	as
follows:

1.	 Let	the	user	choose	a	file	using	a	fileopenbox
2.	 Let	the	user	choose	a	beginning	page	to	select	using	an		enterbox	
3.	 If	the	user	enters	invalid	input,	use	a		msgbox		to	let	the	user	know	that	there	was	a

problem,	then	ask	for	a	beginning	page	again	using	an		enterbox	
4.	 Let	the	user	choose	an	ending	page	using	another		enterbox	
5.	 If	the	user	enters	an	invalid	ending	page,	use	a		msgbox		to	let	the	user	know	that

there	was	a	problem,	then	ask	for	a	beginning	page	again	using	an		enterbox	
6.	 Let	the	user	choose	an	output	file	name	using	a		savefilebox	
7.	 If	the	user	chooses	the	same	file	as	the	input	file,	let	the	user	know	the	problem

using	a		msgbox	,	then	ask	again	for	a	file	name	using	a		savefilebox	
8.	 Output	the	new	file	as	a	section	of	the	input	file	based	on	the	user-	supplied	page

range.	The	user	should	be	able	to	supply	"1"	to	mean	the	first	page	of	the
document.	There	are	a	number	of	potential	issues	that	your	script	should	be	able	to
handle.	These	include:

If	the	user	cancels	out	of	a	box,	the	program	should	exit	without	any	errors
Check	that	pages	supplied	are	valid	numbers;	you	can	use	the	string	method
	isdigit()		to	check	whether	or	not	a	string	is	a	valid	positive	integer.	(The
	isdigit()		method	will	return		False		for	the	string	"0"	as	well.)
Check	that	the	page	range	itself	is	valid	(i.e.,	the	end	to	the	start)

Real	Python	Part	1:	Introduction	to	Python

222Assignment:	Use	GUI	elements	to	help	a	user	modify	files

Create	GUI	Application	with	Tkinter
For	many	basic	tasks	where	GUI	elements	are	needed	one	at	a	time,	EasyGUI	can	save
a	lot	of	effort	compared	to	creating	an	entire	GUI	program.	If	you	do	want	to	build	a
complete	GUI	application	with	many	interacting	elements,	it	will	take	significantly	more
code	(and	time	spent	programming),	but	this	section	will	help	get	you	started.

There	are	a	lot	of	different	tools	available	for	GUI	application	design	in	Python.	The
simplest	and	most	commonly	used	framework	is	the	Tkinter	module,	which	comes	with
Python	by	default.	(In	fact,	easyGUI	is	really	just	a	simplified	way	of	accessing	Tkinter	in
small,	manageable	pieces.)	There	are	more	advanced	toolkits	that	can	be	used	to
produce	more	complicated	(and	eventually	better-looking)	GUIs,	and	we	will	touch	on
these	at	the	end	of	the	chapter.	However,	Tkinter	is	still	the	module	of	choice	for	many
GUI	projects	because	it	is	so	lightweight	and	relatively	easy	to	use	for	simple	tasks
compared	to	other	toolkits.	In	fact,	IDLE	itself	uses	Tkinter!

NOTE:	As	mentioned	in	the	last	section,	because	IDLE	is	also	built	with	Tkinter,
you	might	encounter	difficulties	when	running	your	own	GUI	programs	within
IDLE.	If	you	find	that	the	GUI	window	you	are	trying	to	create	is	unexpectedly
freezing	or	appears	to	be	making	IDLE	misbehave	in	some	unexpected	way,	try
running	your	script	in	Python	via	your	command	prompt	(Windows)	or	Terminal
(Mac/Linux)	to	check	if	IDLE	is	the	real	culprit.

GUI	applications	exist	as	windows,	which	are	just	the	application	boxes	you're	used	to
using	everywhere,	each	one	with	its	own	title,	minimize	button,	close	button,	and	usually
the	ability	to	be	resized.	Within	a	window	we	can	have	one	or	more	frames	that	contain
the	actual	content;	the	frames	help	to	separate	the	window's	content	into	different
sections.	Frames,	and	all	the	different	objects	inside	of	them	(menus,	text	labels,
buttons,	etc.)	are	all	called	widgets.

Let's	start	with	a	window	that	only	contains	a	single	widget.	In	this	case,	we'll	use	a
	Label		to	show	a	single	string	of	text:

Real	Python	Part	1:	Introduction	to	Python

223Create	GUI	Application	with	Tkinter

http://wiki.python.org/moin/GuiProgramming
http://wiki.python.org/moin/GuiProgramming
https://wiki.python.org/moin/TkInter

from	tkinter	import	*

my_app	=	Tk()	#	create	a	new	window

greeting	=	Label(text="Hello,	Tkinter")	#	create	a	text	label

greeting.pack()	#	add	the	label	to	the	window

my_app.mainloop()	#	run	the	application

This	is	already	significantly	more	complicated	than	easyGUI!	First,	we	had	to	import
functionality	from	the	Tkinter	module.	Then	we	created	a	new	Tkinter	window	by	calling
	Tk()		and	made	a		Label		object	containing	some	text.	To	actually	add	the		Label		to
our	app	window	and	make	it	visible,	we	had	to	call	the		pack()		method	on	the		Label	,
which	"packs"	it	into	the	window.	Finally,	we	called	the		mainloop()		method	to	make	our
	my_app		window	and	its	contents	visible	and	begin	the	processing	of	running	the	GUI
application.	Although	it	can't	do	anything	interesting	yet,	it	does	function;	the	application
can	be	resized,	minimized,	and	closed.

If	you	run	this	script,	a	window	should	appear	that	will	look	something	like	one	of	the
following,	depending	on	your	operating	system:

Windows:	

Mac:	

Ubuntu:	

Again,	for	the	sake	of	the	majority,	I'll	stick	to	displaying	only	the	resulting	Windows
application	version	for	the	remainder	of	this	section.

Real	Python	Part	1:	Introduction	to	Python

224Create	GUI	Application	with	Tkinter

Usually,	the	layout	of	even	a	very	basic	complete	GUI	application	will	be	much	more
complicated	than	our	last	example.	Although	it	may	look	intimidating	when	starting	out,
keep	in	mind	that	all	of	the	initial	work	is	helpful	to	make	it	much	easier	once	we	want	to
add	additional	features	to	the	application.	A	more	typical	setup	for	a	(still	blank)	GUI
application	might	look	something	more	like	this:

from	tkinter	import	*

#	define	the	GUI	application

class	App(Frame):

				def	__init__(self,	master):

								Frame.__init__(self,	master)

#	create	the	application	window

window	=	Tk()

window.geometry("400x200")	#	default	window	size

my_app	=	App(window)

my_app.master.title("I	made	a	window!")

my_app.mainloop()	#	start	the	application

Although	this	type	of	setup	is	necessary	for	expanding	GUI	applications	to	more	complex
functionality,	the	code	involved	is	beyond	the	scope	of	this	brief	introduction.	Instead,	we
will	restrict	ourselves	to	a	simpler	setup	that	is	still	completely	functional	but	less	efficient
for	building	advanced	user	interfaces.	For	insight	into	what	the	above	code	is	doing	have
a	look	at	Appendix	C:	Primer	on	Object-Oriented	Programming	in	Python.

Let's	start	with	a	simple	window	again,	but	this	time	add	a	single	frame	into	it.	We'll	set	a
default	window	size,	and	the	one	frame	will	take	up	the	entire	window.	We	can	then	add
widgets	to	the	frame	as	well,	such	as	a	Label	with	text.	This	time,	we'll	specify
background	(bg)	and	foreground	(fg)	colors	for	the		Label		text	as	well	as	a	font:

Real	Python	Part	1:	Introduction	to	Python

225Create	GUI	Application	with	Tkinter

from	tkinter	import	*

window	=	Tk()

window.title("Here's	a	window")

window.geometry("250x100")	#	default	window	size

my_frame	=	Frame()

my_frame.pack()

label_text	=	Label(my_frame,	text="I've	been	framed!",

																		bg="red",	fg="yellow",	font="Arial")

label_text.pack()

window.mainloop()

The	result	is	very	similar	to	our	first	window,	since	the	frame	itself	isn't	a	visible	object:

When	we	created	the	label,	we	had	to	assign	the	label	to	the	frame	by	passing	the	name
of	our	frame,		my_frame	,	as	the	first	argument	of	this		Label		widget.	This	is	important	to
do	because	we're	otherwise	packing	the	label	into	the	window,	and	anything	we	do	to
modify	the	frame's	formatting	won't	be	applied	to	widgets	that	don't	specifically	name	the
frame	to	which	they	belong.	The	frame	is	called	the	parent	widget	of	the	label	since	the
label	is	placed	inside	of	it.	This	becomes	especially	important	once	we	have	multiple
frames	and	have	to	tell	Tkinter	which	widgets	will	appear	in	which	frames.

There	are	a	few	different	ways	we	can	organize	the	packing	of	widgets	into	a	frame.	For
instance,	running	the	same	script	as	above	but	packing	our		Label		with
label_text.pack(fill=X)	will	make	the		Label		span	across	the	entire	width	of	the	frame.
Widgets	stack	vertically	on	top	of	each	other	by	default,	but	we	can	pack	them	side-by-
side	as	well:

Real	Python	Part	1:	Introduction	to	Python

226Create	GUI	Application	with	Tkinter

from	tkinter	import	*

window	=	Tk()

my_frame	=	Frame()

my_frame.pack()

#	a	bar	to	span	across	the	entire	top

label_text1	=	Label(my_frame,	text="top	bar",	bg="red")

label_text1.pack(fill=X)

#	three	side-by-side	labels

label_left	=	Label(my_frame,	text="left",	bg="yellow")

label_left.pack(side=LEFT)	#	place	label	to	the	left	of	the	next	widget

label_mid	=	Label(my_frame,	text="middle",	bg="green")

label_mid.pack(side=LEFT)	#	place	label	to	the	left	of	the	next	widget

label_right	=	Label(my_frame,	text="right",	bg="blue")

label_right.pack()

window.mainloop()

It	can	quickly	get	difficult	to	figure	out	how	to	arrange	things	using		pack()	,	but	there	are
two	other	options	available	as	well	for	getting	your	widgets	organized.	The		place()	
method	can	be	used	to	place	a	widget	in	an	exact	location	within	a	frame	based	on
specific	x	and	y	coordinates,	where	the	point	(0,	0)	is	the	upper	left	corner	of	the	frame.
At	the	same	time,	we	can	also	specify	each	widget's	width	and	height	in	pixels.	For
instance,	let's		place()		a	couple	buttons	in	a	frame:

Real	Python	Part	1:	Introduction	to	Python

227Create	GUI	Application	with	Tkinter

from	tkinter	import	*

window	=	Tk()

window.geometry("300x200")

button1	=	Button(window,	text="I'm	at	offset	(50,	60)")

button2	=	Button(window,	text="I'm	at	offset	(0,	0)")

button1.pack()

button2.pack()

button1.place(height=200,	width=200,	x=50,	y=65)

button2.place(height=150,	width=150,	x=0,	y=0)

window.mainloop()

First	we	set	a	specific	window	size,	which	is	300	pixels	wide	and	200	pixels	tall.	We
created		button1		and		button2		using		Button()	,	made	them	children	of		window		and
gave	them	some	text.	Next,	we	used		pack()		to	put	them	into	our		window	.	Using
	place()	,	we	gave	each	button	a	size	and	positioned	them	at	specific	(x,	y)	coordinates
within	the	window.	Finally,	we	started	the	program	with		mainloop()	.

Other	than	specifying	absolute	placement	and	size	(meaning	that	we	give	exact	amounts
of	pixels	to	use),	we	can	instead	provide	relative	placement	and	size	of	a	widget.	For
instance,	since	frames	are	also	widgets,	let's	add	two	frames	to	a	window	and	place
them	based	on	relative	positions	and	sizes:

Real	Python	Part	1:	Introduction	to	Python

228Create	GUI	Application	with	Tkinter

from	tkinter	import	*

window	=	Tk()

window.geometry("200x50")	#	window	is	200	pixels	wide	by	50	pixels	tall

#	create	side-by-side	frames

frame_left	=	Frame(bd=3,	relief=SUNKEN)	#	give	the	frame	an	outline

frame_left.place(relx=0,	relwidth=0.5,	relheight=1)

frame_right	=	Frame(bd=3,	relief=SUNKEN)	#	give	the	frame	an	outline

frame_right.place(relx=0.7,	relwidth=0.3)

#	add	a	label	to	each	frame

left_label	=	Label(frame_left,	text="I've	been	framed!")

left_label.pack()

right_label	=	Label(frame_right,	text="So	have	I!")

right_label.pack()

window.mainloop()

The	extra	parameters	we	passed	to	each	frame	provided	a	border	(bd)	and	set	that
border	in	"sunken	relief"	so	that	we	could	actually	see	the	edges	of	the	frames,	since	by
default	the	frames	wouldn't	have	been	visible	by	themselves.

This	time	we	used		relx		to	provide	a	relative	x	placement,	which	takes	a	value	from	0	to
1	to	represent	a	fraction	of	the	window's	width.	The	first	label	has		relx=0	,	so	it	appears
all	the	way	at	the	left	of	the	window.	Since	we	gave	the	second	label	a		relx=.7		and
	relwidth=.3	,	it	appears	70%	of	the	way	across	the	window	and	takes	up	the	remaining
30%	of	the	space	without	running	off	the	end	of	the	window.	We	specified	a
	relheight=1		for	the	first	label	so	that	it	took	up	the	entire	height	of	the	window.	Since
we	didn't	name	a		relheight		value	(and	didn't	even	provide	a		rely		value)	for	the
second	label,	it	defaulted	to	appear	at	the	top	of	the	window	with	only	the	height
necessary	to	display	the	text	inside	of	it.	Try	modifying	all	these	values	one	by	one	to
see	how	they	change	the	appearance	of	the	frames.

Real	Python	Part	1:	Introduction	to	Python

229Create	GUI	Application	with	Tkinter

NOTE:	Notice	how	we	had	to	pass	the	name	of	each	frame	as	the	first	argument
of	each	label.	This	is	how	Tkinter	tracks	which	widget	belongs	in	which	frame.
Otherwise,	we	wouldn't	know	which	frame	our	label	belongs	to	and	couldn't	tell
where	to	pack	and	display	it.	Even	if	you	only	have	a	single	frame,	however,	since
relative	placement/sizing	is	done	inside	of	the	parent	widget,	you	should	always
be	sure	to	name	the	frame	to	which	each	widget	belongs.

Although	it	offers	more	detailed	control	than		pack()		does,	using		place()		to	arrange
widgets	usually	isn't	an	ideal	strategy,	since	it	can	be	difficult	to	update	the	specific
placements	of	everything	if	one	widget	gets	added	or	deleted.	Beyond	this,	different
screen	resolutions	can	make	a	window	appear	somewhat	differently,	making	your
careful	placements	less	effective	if	you	want	to	share	the	program	to	be	run	on	different
computers.

The	last	and	usually	the	easiest	way	to	make	clean,	simple	GUI	layouts	without	too
much	hassle	is	by	using		grid()		to	place	widgets	in	a	two-dimensional	grid.	To	do	this,
we	can	imagine	a	grid	with	numbered	rows	and	columns,	where	we	can	then	specify
which	cell	(or	cells)	of	our	grid	we	want	to	be	taken	up	by	each	particular	widget.

from	tkinter	import	*

window	=	Tk()

my_frame	=	Frame()

my_frame.grid()	#	add	frame	to	take	up	the	whole	window	using	grid()

label_top_left	=	Label(my_frame,	text="I'm	at	(1,1)")

label_top_left.grid(row=1,	column=1)

label_bottom_left	=	Label(my_frame,	text="I'm	at	(2,1)")

label_bottom_left.grid(row=2,	column=1)

button_bottom_right	=	Button(my_frame,	text="I'm	at	(3,2)")

button_bottom_right.grid(row=3,	column=2)

window.mainloop()	#	start	the	application

Real	Python	Part	1:	Introduction	to	Python

230Create	GUI	Application	with	Tkinter

Instead	of	calling		pack()		on	our	frame	widget,	we	put	the	frame	into	the	window	by
using		grid()	,	which	will	let	Tkinter	know	that	we	plan	to	place	widgets	inside	this	frame
by	also	using		grid()		instead	of	another	method.	We	could	then	call		grid()		on	each
widget	instead	of		pack()		or		place()		by	providing	a	row	and	column	numbers,	which
start	at		row=1		and		column=1		in	the	upper-left	corner	of	the	window.

WARNING:	Don't	try	to	combine	different	ways	of	adding	widgets	into	a	single
frame	-	for	instance,	don't	use		grid()		on	some	widgets	and		pack()		on	others.
Tkinter	has	no	way	to	prioritize	one	method	over	the	other	and	usually	ends	up
freezing	your	application	entirely	when	you've	given	it	conflicting	packing
instructions.

We	can	assign	values	to	the	arguments		padx		and		pady		for	any	given	widget,	which
will	include	extra	space	around	the	widget	horizontally	and/or	vertically.	We	can	also
assign	values	to	the	argument	sticky	for	each	widget,	which	takes	cardinal	directions
(like	a	compass)	such	as		E		or		N+W	;	this	will	tell	the	widget	which	side	(or	sides)	it
should	"stick"	to	if	there	is	extra	room	in	that	cell	of	the	grid.	Let's	look	at	these
arguments	in	an	example:

Real	Python	Part	1:	Introduction	to	Python

231Create	GUI	Application	with	Tkinter

from	tkinter	import	*

window	=	Tk()

my_frame	=	Frame()

my_frame.grid()	#	add	frame	to	window	using	grid()

label_top_left	=	Label(my_frame,	text="I'm	at	(1,1)",	bd="3",	relief=SUNKEN)

label_top_left.grid(row=1,	column=1,	padx=100,	pady=30)

label_bottom_left	=	Label(my_frame,	text="I'm	at	(2,1)",	bd="3",	relief=SUNKEN)

label_bottom_left.grid(row=2,	column=1,	sticky=E)

button_right	=	Button(my_frame,	text="I	span	2	rows",	height=5)

button_right.grid(row=1,	column=2,	rowspan=2)

window.mainloop()	#	start	the	application

We	included	a	border	and		sunken		relief	to	the	two	labels	(just	like	we	did	previously	for
the	frame)	so	that	we	could	see	their	outlines.	Because	we	gave	large		padx		and		pady	
values	to	the	first	label,	it	appears	with	lots	of	extra	space	around	it,	centered	in	the
middle	of	the	first	grid	cell.	The	second	label	appears	in	the	second	row	and	first	column,
right	underneath	the	first	label,	but	this	time	we	specified		sticky=E		to	say	that	the	label
should	stick	to	the	east	side	of	the	grid	cell	if	there	is	extra	horizontal	space.

We	added	a	button	in	the	second	column,	specifying	a	height	of	5	(text	lines).	This
allows	us	to	see	that,	even	though	we	placed	the	button	at		row=1	,	since	we	also
specified		rowspan=2	,	the	button	is	centered	vertically	across	both	the	first	and	second
rows.

Real	Python	Part	1:	Introduction	to	Python

232Create	GUI	Application	with	Tkinter

NOTE:	Since	it	often	takes	a	fair	amount	of	effort	to	get	widgets	arranged	in	a
window	exactly	as	you'd	like,	it's	usually	a	good	idea	to	draw	out	a	mock-up	of
what	you	want	your	GUI	application	to	look	like	on	paper	before	doing	any	coding
at	all.	With	a	physical	reference,	it	will	be	much	easier	to	translate	what's	in	your
head	into	GUI	widgets	organized	in	frames.

The	buttons	we've	created	so	far	aren't	very	useful,	since	they	don't	yet	do	anything
when	we	click	on	them.	However,	we	can	specify	a	command	argument	to	a	button	that
will	run	a	function	of	our	choice.	For	instance,	let's	create	a	simple	function
	increment_button()		that	takes	the	number	displayed	on	our	button	and	increments	it	by
one:

from	tkinter	import	*

window	=	Tk()

def	increment_button():

				new_number	=	1	+	my_button.cget("text")

				my_button.config(text=new_number)

my_button	=	Button(text=1,	command=increment_button)

my_button.pack()

window.mainloop()	#	start	the	application

Now	each	time	you	click	on	the	button,	it	will	add	one	to	the	value	by	configuring	the
button	with	a	new	text	attribute.	We	used	the		cget()		method	on	the	button	to	retrieve
the	text	currently	displayed	on	the	button;	we	can	use		cget()		in	this	same	way	to	get
the	values	taken	by	other	attributes	of	other	types	of	widgets	as	well.

There	are	a	number	of	other	types	of	widgets	available	in	Tkinter	as	well;	a	good	quick
reference	can	be	found	here.	Besides	labels	and	buttons,	one	very	commonly	used	type
of	widget	is	an		Entry	,	which	allows	a	place	for	the	user	to	enter	a	line	of	text.

An	entry	works	a	little	differently	from	labels	and	buttons	in	that	the	text	in	the	entry	box
is	blank	at	first.	If	you	want	to	add	"default"	text	to	display,	it	must	be	inserted	after
creating	the	entry	using	the		insert()		method,	which	requires	as	its	first	argument	a

Real	Python	Part	1:	Introduction	to	Python

233Create	GUI	Application	with	Tkinter

http://effbot.org/tkinterbook/tkinter-index.htm#class-reference

position	in	the	text	for	inserting	the	new	string.	For	instance,	after	creating	a	new		Entry	
with		myEntry	=	Entry()	,	we	would	then	say		myEntry.insert(0,	"default	text")		to	add
the	string	"default	text"	to	the	entry	box.	In	order	to	return	text	currently	in	the	entry	box,
we	use	the		get()		method	instead	of	the	usual		cget()		method.	Both	these	concepts
are	easier	seen	in	an	example:

from	tkinter	import	*

window	=	Tk()

entry1	=	Entry()

entry1.pack()

entry1.insert(0,	"this	is	an	entry")

entry2	=	Entry()

entry2.pack()

my_text	=	entry1.get()	#	get	the	text	from	entry1

entry2.insert(0,	my_text)

entry2.insert(8,	"also	")	#	add	"also"	to	the	middle	of	my_text

window.mainloop()	#	start	the	application

Here	we	packed	two	entry	boxes	into	a	window,	adding	new	text	at	index	position	0	to
	entry1		first.	We	added	the	text	seen	in		entry2		by	first	using		get()		to	return	the	text
in		entry1	,	inserting	this	same	text	into		entry2	,	then	inserting	additional	text	into	this
string	starting	at	index	location	8.	We	can	also	specify	a	width	(in	characters)	that	we
want	an	entry	box	to	take	up	by	passing	a	value	to	width	when	we	create	the	Entry.

Let's	put	all	of	these	GUI	pieces	together	into	a	single	usable	application.	We'll	modify
the	first	function	that	we	wrote	way	back	in	the	Functions	and	Loops	chapter	to	create
a	GUI-based	temperature	conversion	application:

Real	Python	Part	1:	Introduction	to	Python

234Create	GUI	Application	with	Tkinter

from	tkinter	import	*

def	recalc():

				cel_temp	=	entry_cel.get()	#	get	temp	from	text	entry

				try:	#	calculate	converted	temperature	and	place	it	in	label

								far_temp	=	float(cel_temp)	*	9/5	+	32

								far_temp	=	round(far_temp,	3)	#	round	to	three	decimal	places

								result_far.config(text=far_temp)

				except	ValueError:	#	user	entered	non-numeric	temperature

								result_far.config(text="invalid")

#	create	the	application	window	and	add	a	Frame

window	=	Tk()

window.title("Temperature	converter")

frame	=	Frame()

frame.grid(padx=5,	pady=5)	#	pad	top	and	left	of	frame	5	pixels	before	grid

#	create	and	add	text	labels

label_cel	=	Label(frame,	text="Celsius	temperature:")

label_cel.grid(row=1,	column=1,	sticky=S+E)

label_far	=	Label(frame,	text="Fahrenheit	temperature:")

label_far.grid(row=2,	column=1,	sticky=S+E)

#	create	and	add	space	for	user	entry	of	text

entry_cel	=	Entry(frame,	width=7)

entry_cel.grid(row=1,	column=2)

entry_cel.insert(0,	0)

#	create	and	add	label	for	text	calculation	result

result_far	=	Label(frame)

result_far.grid(row=2,	column=2)

#	create	and	add	'recalculate'	button

btn_recalc	=	Button(frame,	text="Recalculate",	command=recalc)

btn_recalc.grid(row=1,	column=3,	rowspan=2)

recalc()	#	fill	in	first	default	temperature	conversion

window.mainloop()	#	start	the	application

Real	Python	Part	1:	Introduction	to	Python

235Create	GUI	Application	with	Tkinter

First	we	created	the	function		recalc()	,	which	gets	the	Celsius	temperature	from	the
entry	box,	converts	it	into	Fahrenheit,	and	sets	that	(rounded)	number	as	the	text	of	the
Fahrenheit	temperature	label.	Notice	how	we	used	the		try/except		structure	to	check	if
the	user	entered	something	that	isn't	a	number	so	that	we	can	display	"invalid"	as	the
converted	temperature	instead	of	raising	an	error.

The	uses	of	GUI	widgets	should	all	look	familiar	to	you	now.	We	used	a		grid()		layout
with	the	value		S+E		to	the	sticky	argument	of	our	labels	so	that	they	would	be	right-
aligned.	The	button,	which	is	centered	across	two	rows,	calls	our		recalc()		function	so
that	the	current	Celsius	temperature	is	converted	and	redisplayed	in	the	Fahrenheit	label
each	time	the	button	is	clicked;	the	actual	button	click	by	the	user	is	considered	an
event,	and	by	passing	a	function	name	to	the	command	argument	we	ensure	that	the
button	is	"listening"	for	this	event	so	that	it	can	take	an	action.	We	can	also	call	the
function	ourselves,	which	we	do	before	running	the	program	in	order	to	fill	in	a	default
converted	value	to	our	Fahrenheit	label.

Finally,	we	can	also	use		filedialog		to	allow	the	user	to	open	and	save	files,	much	like
we	did	before	with	EasyGUI.	Although	the		filedialog		module	is	part	of	the		tkinter	
module,	we	must	import	it	separately.

Since	we	aren't	presenting	GUI	elements	one	at	a	time,	however,	file	dialogs	in	Tkinter
will	usually	be	linked	to	other	specific	GUI	widgets	-	for	instance,	having	the	user	click	on
a	button	in	order	to	pop	up	a	file	dialog	box.	Let's	write	a	quick	script	that	uses	an	"Open"
file	dialog	to	let	the	user	select	either	a	".PY"	file	or	a	".TXT"	file	and	then	displays	the	full
name	of	that	file	back	in	a	label:

Real	Python	Part	1:	Introduction	to	Python

236Create	GUI	Application	with	Tkinter

from	tkinter	import	*

from	tkinter	import	filedialog

window	=	Tk()

frame	=	Frame()

frame.pack()

def	open_file():	#	ask	user	to	choose	a	file	and	update	label

				type_list	=	[("Python	scripts",	"*.py"),	("Text	files",	"*.txt")]

				file_name	=	filedialog.askopenfilename(filetypes=type_list)

				label_file.config(text=file_name)

#	blank	label	to	hold	name	of	chosen	file

label_file	=	Label(frame)

label_file.pack()

#	button	to	click	on	for	'Open'	file	dialog

button_open	=	Button(frame,	text="Choose	a	file...",	command=open_file)

button_open.pack()

window.mainloop()	#	start	the	application

Clicking	the	button	will	cause	our	function		open_file()		to	run,	which	opens	a	file	dialog
using		filedialog.askopenfilename()	.

We	passed		type_list		into	the	argument		filetypes		of	the
	filedialog.askopenfilename()		function	in	order	to	provide	a	list	of	the	different	types	of
files	that	we	want	the	user	to	be	able	to	choose;	these	are	provided	as	a	list	of	tuples,
where	the	first	item	in	each	tuple	is	a	description	of	the	file	type	and	the	second	item	in
each	tuple	is	the	actual	file	extension.

Just	like	with	EasyGUI,	the		filedialog.askopenfilename()		function	returns	the	full	name
of	the	file,	which	we	can	then	set	equal	to	our	string		file_name		and	pass	into	our	label.
If	the	user	hit	the	"Cancel"	button	instead,	the	function	returns		None		and	our	label
becomes	blank.

Real	Python	Part	1:	Introduction	to	Python

237Create	GUI	Application	with	Tkinter

Likewise,	there	is	a		filedialog.asksaveasfilename()		function	that	takes	the	same
arguments	as		filedialog.askopenfilename()		and	works	analogously	to	the
	filesavebox()		of	EasyGUI.	We	can	also	pass	a	default	extension	type	to
	asksaveasfilename()		in	order	to	append	a	file	extension	onto	the	name	of	the	provided
file	if	the	user	didn't	happen	to	provide	one	(although	some	operating	systems	might
ignore	this	argument):

from	tkinter	import	*

from	tkinter	import	filedialog

window	=	Tk()

frame	=	Frame()

frame.pack()

def	save_file():	#	ask	user	to	choose	a	file	and	update	label

				type_list	=	[("Python	scripts",	"*.py"),	("Text	files",	"*.txt")]

				file_name	=	filedialog.asksaveasfilename(filetypes=type_list,

defaultextension=".py")

				my_text	=	"I	will	save:	"	+	file_name

				label_file.config(text=my_text)

#	blank	label	to	hold	name	of	chosen	file

label_file	=	Label(frame)

label_file.pack()

#	button	to	click	on	for	'Open'	file	dialog

button_open	=	Button(frame,	text="Choose	a	file...",	command=save_file)

button_open.pack()

window.mainloop()	#	start	the	application

Above,	I	navigated	to	the	folder	"C:/Python27/"	and	told	the	application	to	save	the	file
myScript	without	typing	out	any	file	extension,	but	because	we	provided
	defaultextension=".py"		as	an	argument	to		asksaveasfilename()	,	this	ending	was
automatically	added	to	the	name	of	the	file.

Real	Python	Part	1:	Introduction	to	Python

238Create	GUI	Application	with	Tkinter

As	mentioned	at	the	start	of	this	section,	Tkinter	is	a	popular	choice	for	GUI	application
development,	and	this	introduction	has	only	covered	the	most	basic	use	cases.	There
are	a	number	of	other	choices	available,	some	of	which	offer	additional	flexibility	and
more	complicated	functionality	-	although	usually	at	the	cost	of	the	extra	time	it	takes	to
develop	such	detailed	and	complex	applications.	Once	you	feel	that	you	need	something
more	customizable	than	Tkinter,	wxPython	is	a	good	choice	for	a	next	step.	PyQt	and
PyGtk	are	two	of	the	other	most	popular	and	widely	used	GUI	toolkits	for	Python.

Review	exercises:

1.	 Recreate	the	various	windows	pictured	and	described	in	this	section,	complete	with
all	the	same	GUI	widgets	and	any	necessary	interaction,	by	writing	your	own	scripts
without	referring	to	the	provided	code

2.	 Using		grid()		to	organize	your	widgets	horizontally,	create	a	button	that,	when
clicked,	takes	on	the	value	entered	into	an	entry	box	to	its	right

Real	Python	Part	1:	Introduction	to	Python

239Create	GUI	Application	with	Tkinter

http://wxpython.org/what.php
http://www.riverbankcomputing.co.uk/software/pyqt/intro
http://pygtk.org/

Final	Thoughts
Congratulations!	You've	made	it	to	the	beginning.	You	already	know	enough	to	do	a	lot
of	amazing	things	with	Python,	but	now	the	real	fun	starts:	it's	time	to	explore	on	your
own!

The	best	way	to	learn	is	by	solving	real	problems	of	your	own.	Sure,	your	code	might	not
be	very	pretty	or	efficient	when	you're	just	starting	out,	but	it	will	be	useful.	If	you	don't
think	you	have	any	problems	of	the	variety	that	Python	could	solve,	pick	a	popular
module	that	interests	you	and	create	your	own	project	around	it.

Part	of	what	makes	Python	so	great	is	the	community.	Know	someone	learning	Python?
Help	them	out!	The	only	way	to	know	you've	really	mastered	a	concept	is	when	you	can
explain	it	to	someone	else.

If	you're	interested	in	web	development,	consider	diving	into	the	more	advanced	Real
Python	courses,	Web	Development	with	Python	and	Advanced	Web	Development	with
Django.

When	you	feel	ready,	consider	helping	out	with	an	open-source	project	on	GitHub.	If
puzzles	are	more	your	style,	try	working	through	some	of	the	mathematical	challenges
on	Project	Euler	or	the	series	of	riddles	at	Python	Challenge.	You	can	also	sign	up	for
Udacity's	free	CS101	course	to	learn	how	to	build	a	basic	search	engine	using	Python	-
although	you	know	most	of	the	Python	concepts	covered	there	already!

If	you	get	stuck	somewhere	along	the	way,	I	guarantee	that	someone	else	has
encountered	(and	potentially	solved)	the	exact	same	problem	before;	search	around	for
answers,	particularly	at	Stack	Overflow,	or	find	a	community	of	Pythonistas	willing	to
help	you	out.

If	all	else	fails,		import	this		and	take	a	moment	to	meditate	on	that	which	is	Python.

Real	Python	Part	1:	Introduction	to	Python

240Final	Thoughts

http://wiki.python.org/moin/UsefulModules
http://RealPython.com
https://github.com/languages/Python
http://projecteuler.net/problems
http://www.pythonchallenge.com/
https://www.udacity.com/course/intro-to-computer-science--cs101
http://stackoverflow.com/questions/tagged/python
http://www.reddit.com/r/learnpython/

Appendix	A:	Installing	Python
Let's	get	Python	3.5	installed!

Real	Python	Part	1:	Introduction	to	Python

241Appendix	A:	Installing	Python

https://www.python.org/downloads/release/python-350/

Check	Current	Version

Mac	and	Linux

All	Mac	OS	X	versions	since	10.4	and	most	Linux	distributions	come	pre-installed	with
the	latest	version	of	Python	2.7.x.	You	can	view	the	version	by	opening	the	terminal	and
typing		python		to	enter	the	Python	interpreter.	The	output	will	look	something	like	this:

$	python

Python	3.5.1	(v3.5.1:37a07cee5969,	Dec		5	2015,	21:12:44)

[GCC	4.2.1	(Apple	Inc.	build	5666)	(dot	3)]	on	darwin

Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.

>>>

NOTE:	If	you	have	a	version	older	than	3.5,	please	download	the	latest	version
below.

Real	Python	Part	1:	Introduction	to	Python

242Check	Current	Version

Install	Python
Choose	your	Operating	system.

Mac

You	need	a	Python	version	3.5+.	So,	if	you	need	to	download	a	new	version,	download
the	latest	installer	for	version	3.5.1.

Once	downloaded,	double-click	the	file	to	install.

Linux

If	you	are	using	Ubuntu,	Linux	Mint,	or	another	Debian-based	system,	enter	the	following
command	in	your	terminal	to	install	Python:

$	sudo	apt-get	install	python3.5

Or	you	can	download	the	tarball	directly	from	the	official	Python	website.	Once
downloaded,	run	the	following	commands:

$	tar	-zxvf	[mytarball.tar.gz]

$./configure

$	make

$	sudo	make	install

NOTE:	If	you	have	problems	or	have	a	different	Linux	distribution,	you	can	always
use	your	package	manager	or	just	do	a	Google	search	for	how	to	install	Python	on
your	particular	Linux	distribution.

Windows

Download

Start	by	downloading	Python	3.5.1	from	the	official	Python	website.	The	Windows
version	is	distributed	as	a	MSI	package.	Once	downloaded,	double-click	to	start	the
installer.	Follow	the	installer	instructions	to	completion.	By	default	this	will	install	Python
to		C:\Python35	.

Real	Python	Part	1:	Introduction	to	Python

243Install	Python

http://www.python.org/download/
http://www.python.org/download/
http://www.python.org/download/

NOTE:	You	may	need	to	be	logged	in	as	the	administrator	to	run	the	install.

Test

To	test	this	install	open	your	command	prompt,	which	should	open	to	the	C:prompt,
	C:/>	,	then	type:

\Python35\python.exe

And	press	enter.	You	should	see	something	like:

Python	3.5.1	(v3.5.1:37a07cee5969,	...)	on	win32

Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.

>>>

Yay!	You	just	started	Python!

NOTE:	The		>>>		indicates	that	you	are	at	the	Python	interpreter	(or	prompt)
where	you	can	run	Python	code	interactively.

To	exit	the	Python	prompt,	type:

exit()

Then	press	Enter.	This	will	take	you	back	to	the	C:prompt.

Path

You	also	need	to	add	Python	to	your	PATH	environmental	variables,	so	when	you	want
to	run	a	Python	script,	you	do	not	have	to	type	the	full	path	each	and	every	time,	as	this
is	quite	tedious.	In	other	words,	after	adding	Python	to	the	PATH,	we	will	be	able	to
simply	type		python		in	the	command	prompt	rather	than		\Python35\python.exe	.

Since	you	downloaded	Python	version	3.5.1,	you	need	to	add	the	add	the	following
directories	to	your	PATH:

	C:\Python35\	

	C:\Python35\Scripts\	

	C:\PYTHON35\DLLs\	

	C:\PYTHON35\LIB\	

Open	your	power	shell	and	run	the	following	statement:

Real	Python	Part	1:	Introduction	to	Python

244Install	Python

[Environment]::SetEnvironmentVariable("Path",

				"$env:Path;C:\Python35\;C:\Python35\Scripts\;

				C:\PYTHON35\DLLs\;C:\PYTHON35\LIB\;",	"User")

That's	it.

Video

Watch	the	video	here	for	assistance.	Note:	Even	though	this	is	an	older	version	of
Python	the	steps	are	the	same.

Real	Python	Part	1:	Introduction	to	Python

245Install	Python

http://youtu.be/ZvugV4Jd_sc

Verify	Install
Test	this	new	install	by	opening	a	new	terminal,	then	type		python	.	You	should	see	the
same	output	as	before	except	the	version	number	should	now	be	3.5.1	(or	whatever	the
latest	version	of	Python	is):

$	python

Python	3.5.1	(v3.5.1:37a07cee5969,	Dec		5	2015,	21:12:44)

[GCC	4.2.1	(Apple	Inc.	build	5666)	(dot	3)]	on	darwin

Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.

>>>

NOTE:	You	may	need	to	run		python3		instead	of		python		if	you	have	multiple
versions	of	Python	installed.

Congrats!	You	have	Python	installed	and	configured.

Real	Python	Part	1:	Introduction	to	Python

246Verify	Install

Appendix	B:	Regular	Expressions
A	regular	expression	(also	known	as	regex,	regexp,	or	RE)	is	a	powerful	tool	used	for
quickly	finding	and	extracting	patterns	in	text.	Regular	expressions	are	not	particular	to
Python;	they	are	a	general	programming	concept	that	can	be	used	with	a	wide	variety	of
programming	languages.	They	use	a	language	all	of	their	own	that	is	notoriously	difficult
to	learn	but	incredibly	useful.	Once	mastered,	you	can	find	complex	patterns	within	text
in	very	compact	syntax.

Real	Python	Part	1:	Introduction	to	Python

247Appendix	B:	Regular	Expressions

https://en.wikipedia.org/wiki/Regular_expression

Basic	Syntax
The	basic	idea	behind	regular	expressions	is	to	combine	ordinary	text	with	a	number	of
different	"special"	characters	that	are	interpreted	as	ways	to	signify	different	types	of
patterns.	For	instance,	the	asterisk	character,		*	,	stands	for	"zero	or	more"	of	whatever
came	just	before	the	asterisk.	Let's	look	at	some	basic	examples	of	using	such	patterns
to	define	regular	expressions	(left	column)	and	then	the	subsequent	strings	that	those
expressions	match	(right	column):

Expression Description Example	Match(es)

a matches	the	character	"a" a

happy matches	the	entire	word	"happy" happy

h.ppy "."	matches	any	single	character happy,	hippy

ha*ppy "*"	matches	zero	or	more	of	"a" hppy,	happy,	haaappy

us|them "|"	matches	"us"	or	"them"	using	OR us,	them

SEE	ALSO:	Check	out	the	official	Python	docs	for	all	the	special	characters	or
PyRegex	for	a	compact	version.

The		*		special	character	works	similarly	to	using	a	wildcard	in	file	searching.	The		|	
special	character	works	the	same	way	as	saying		or		in	Python.	You	can	also	use
parentheses	to	give	precedence	to	certain	patterns.	What	do	you	think		the(ir|re|y're)	
will	match?	Answer

Real	Python	Part	1:	Introduction	to	Python

248Basic	Syntax

https://docs.python.org/3.5/library/re.html
http://www.pyregex.com/
http://rubular.com/r/DM5olNqQYV

When	Should	You	Use	Regular
Expressions?
Rule	of	thumb:	Unless	you	absolutely	need	to	use	regular	expressions,	stick	with
Python's	basic	string-matching	methods	-	like		find()		and		replace()	.	They	are	much
easier	to	understand.	In	other	words,	take	a	lazy	approach	and	start	with	built-in
functions;	if	the	code	starts	becoming	overly	complex,	switch	to	regular	expressions.	But
what	does	"overly	complex"	mean?

Well,	let's	start	at	the	opposite	extreme:	simple.	When	you	can	implement	all	of	your
search	logic	in	a	single	predicate,	you	should	use	the	basic	Python	functions.

For	example:

>>>	str	=	'Explicit	is	always	better	than	implicit.'

>>>	print(str.replace('always',	'much'))

Explicit	is	much	better	than	implicit.

In	the	above	case	we	know	exactly	what	we're	looking	for.	But	what	happens	if	we	don't?
What	about	a	10-digit	phone	number?	In	that	case,	we	only	know	that	the	pattern	is	a
series	of	integers	with	10	digits	(that	may	or	may	not	be	broken	up	by	dashes	or	some
other	characters).

>>>	str	=	"Jack's	phone	number	is	415-690-4993"

>>>	print(str.replace('-',	''))

Jack's	phone	number	is	4156904993

Here	we	can	still	use		replace()		since	we	are	working	with	just	a	single	phone	number.
Let's	say	you	have	a		list		of	phone	numbers	that	need	to	be	standardized	into	the
format		XXX-XXX-XXXX	:

phone_list	=	[

				"555-555-5555","555	555	5555","555.555.5555",

				"555.555.5555","555.555-5555","555/555/5555"

]

Real	Python	Part	1:	Introduction	to	Python

249When	Should	You	Use	Regular	Expressions?

It's	safe	to	say	that	if	you	used		find()		and/or		replace()	,	you'd	have	a	number	of
conditional	statements	and	a	loop,	making	the	solution	significantly	more	complex,
spanning	beyond	a	single	predicate.

However,	if	we	use	regex,	the	solution	is	much	simpler:

>>>	import	re

>>>

>>>	phone_list	=	[

...					"555-555-5555","555	555	5555","555.555.5555",

...					"555.555.5555","555.555-5555","555/555/5555"

...]

>>>	pattern	=	r'\D'

>>>	for	phone	in	phone_list:

...					phone_num	=	re.sub(pattern,	"-",	phone)

...					print	"Phone	Num:	",	phone_num

...

Phone	Num:		555-555-5555

Phone	Num:		555-555-5555

Phone	Num:		555-555-5555

Phone	Num:		555-555-5555

Phone	Num:		555-555-5555

Phone	Num:		555-555-5555

>>>

Here,	we	used	the		re.sub()		function	to	match	all	non-digits	(r'\D')	-	e.g.,	periods,
forward-slashes,	and	spaces	-	and	then	replace	(or	substitute)	them	with		"-"	.	This	is	a
commonly	used	function,	so	make	sure	you	understand	it.

Although	these	are	still	just	basic	examples,	you	should	understand	what	a	regular
expression	is	and	how	to	use	them.	Used	correctly,	in	the	right	situation,	you	can	save
much	time	when	having	to	find	and	parse	a	string.

Before	moving	on,	make	sure	you	understand	the	examples,	as	well	the	the	meaning	of
the	special	characters	along	with	how	they	are	used	in	your	regular	expressions	from
this	lesson.	Especially	take	note	of	when	you	should	and	shouldn't	use	regular
expressions,	and	remember	that	regular	expressions	can	become	complex	as	well,
especially	when	used	incorrectly.	If	you	find	yourself	writing	complex	expressions,	you
may	need	to	test	the	waters	with		find()		and		replace()	.

Another	good	rule	of	thumb	for	deciding	when	to	use	regular	expressions	rather	than
	find()		and		replace()		would	be	when	regex:

1.	 is	easier	to	understand;
2.	 expresses	a	clear,	concise	intent;	and

Real	Python	Part	1:	Introduction	to	Python

250When	Should	You	Use	Regular	Expressions?

3.	 is	much	shorter	add	easier	to	change/adapt.

SEE	ALSO:	If	you	still	have	questions	over	whether	to	use	regex	or	the	regular
string	methods,	follow	the	Zen	of	Python:		import	this	.

Real	Python	Part	1:	Introduction	to	Python

251When	Should	You	Use	Regular	Expressions?

Functions

	re.match()		and		re.search()	

Used	for	finding	text,	the		re.match()		and		re.search()		functions	are	two	of	the	most
widely	used	methods	in	the		re		module.

1.	 	re.match(pattern,	string)		searches	for	a	match	only	at	the	beginning	of	a	string.
2.	 	re.search(pattern,	string)		searches	for	a	match	anywhere	in	the	string.

Before	looking	at	an	example,	we'll	be	using		group()		to	further	isolate	portions	of	the
matching	text.	You	specify	groups	with	parenthesis	within	the	expression.

Example	1

>>>	import	re

>>>	text	=	"easier	said	than	done"

>>>

>>>	#	re.match

>>>

>>>	find_match	=	re.match(r'done',	text)

>>>	if	find_match:

...					print("Found:	{}".format((find_match).group()))

...	else:

...					print("Not	found.")

...

Not	found

>>>

>>>	#re.search

>>>

>>>	find_match	=	re.search(r'done',	text)

>>>	if	find_match:

...					print("Found:	{}".format((find_match).group()))

...	else:

...					print("Not	found.")

...

Found:	done

NOTE:	You	could	also	use	the	expression		r'\ds[a-z]*'		to	grab	the	word	"done"
(and	some	other	possibilities)	using	the		search()		function.	Try	this	out.	Can	you
find	other	special	characters	which	can	be	used	to	match	the	word	"done"?

Real	Python	Part	1:	Introduction	to	Python

252Functions

Example	2

import	re

text	=	"My	name	is	Inigo"

#	re.match(pattern,	string,	flags=0)

m	=	re.match(r'(.*)	name	(.s)	.*',	text)

if	m:

			print("group(0):",	m.group(0))

			print("group(1):",	m.group(1))

			print("group(2):",	m.group(2))

else:

			print("Sorry.	No	match!!")

Results:

group():	My	name	is	Inigo

group(1):	My

group(2):	is

What's	happening	here?

First,	break	down	the	regular	expression:

1.	 	.*		-	Matches	zero	or	more	of	any	character
2.	 	name		-	Matches	the	entire	word	"name"
3.	 	.s		-	Matches	any	single	character	and	then	the	character	"s".

As	for	the	groups:

Group	0	defines	the	string	matched	from	the	entire	regular	expression,	while	Group	1
and	2	represent	sub-groups	(defined	by	anything	put	into	parentheses).

Try	changing	the	groups	-	i.e.,		r'(.*)	name	.s	(.*)'		to	see	how	it	affects	the	output.

Example	3

You	can	also	define	group	names,	which	just	makes	the	groups	easier	to	read.

Real	Python	Part	1:	Introduction	to	Python

253Functions

import	re

string	=	"Inigo	Montoya"

#	re.match(pattern,	string,	flags=0)

m	=	re.match(r"(?P<first>\w+)\W+(?P<last>\w+)",	string)

if	m:

			print("group(0):",	m.group(0))

			print("group(1):",	m.group(1))

			print("group(2):",	m.group(2))

			print("")

			print('group("first")	:	',	m.group("first"))

			print('group("last")	:	',	m.group("last"))

else:

			print("Sorry.	No	match!!")

Break	down	the	regex	on	your	own.	What	does	each	group	match?	What	does	each
special	character	do?	How	about	the	group	definitions?	Do	they	make	sense	to	you?

Like	the	previous	example,	group	0	defines	the	string	matched	from	the	entire	regular
expression,	while	Group	1	and	2	still	represent	the	sub-groups.	Since	we	also	added	in
named	groups	using		(?P<name>...)	,	we	can	also	represent	the	substrings	with	"first"
and	"last".

Practice

Would	you	use		re.match()		or		re.search()		to	get	the	word	"said"	from		text	=	"easier
said	than	done"	?	Not	sure?	Test	it	out	both	ways,	using	regex	and	avoiding	it.	How
about	getting	an	unknown	number	out	of	a	string	of	text?

	re.sub()	

Again,		re.sub()		is	used	for	searching	and	replacing	text:		re.sub(pattern,	replacement,
string,	max=0)	.	This	function	replaces	all	occurrences	of	a	specific	pattern	unless	a
positive		max		is	provided.

Example

Real	Python	Part	1:	Introduction	to	Python

254Functions

>>>	import	re

>>>

>>>	text	=	"Real	Python	teaches	programming	and	web	development	through	hands-on,	interesting	examples."

>>>	pattern	=	re.sub("hands-on",	"practical",	text,	0)		#	no	max;	replace	all

>>>	print(pattern)

Real	Python	teaches	programming	and	web	development	through	practical,	interesting	examples.

Practice

Type	the	following	into	your	shell:

>>>	import	re

>>>	text	=	"Avoid	having	single	statements	on	a	single	line"

Add	a	variable	called		pattern		that	uses	the		re.sub()		function	to	change	the	output	to:
"Avoid	having	multiple	statements	on	a	single	line".	Stuck?	Use	those	information
retrieval	skills.	Find	the	answer	on	your	own	with	a	little	help	from	Google,	Stack
Overflow,	the	Python	documentation,	and	so	forth.

Real	Python	Part	1:	Introduction	to	Python

255Functions

More	Practice

Problem	1

import	re

validation	=	re.compile(r'[A-Za-zs.]')

name	=	raw_input("Please	enter	your	name:	")

while	not	validation.search(name):

				print	"Please	enter	your	name	correctly!"

				name	=	raw_input("Please	enter	your	name:	")

print("\nYour	name	is	{}!".format(name))

1.	 Read	about	the		re.compile		function	from	the	official	Python	documentation.	In	your
own	words,	describe	how	to	use	it	and	why	you'd	want	to.

2.	 Next,	run	the	program	a	few	times,	testing	inputs	that	validate	and	don't	validate.
3.	 Finally,	refactor	the	program	to	ensure	that	the	input	is	an	email	address:	test	for	the

existence	of	alphanumeric	text,	followed	by	the	"@"	symbol,	another	string,	a
period,	and	finally	the	ending	"com".

4.	 Bonus:	Allow	for	other	domains	-	i.e.,	com,	org,	edu	or	net.

Problem	2

Open	the	phone_list.py	file	from	the	exercises	folder,	which	contains	a	list	of	dictionaries:

data	=	[

				{'name':	'Debra	Hardy',	'phone':	'(140)	732-2619'},

				{'name':	'Claudia	Baker',	'phone':	'(833)	362-0448'},

				{'name':	'Justin	Lara',	'phone':	'(609)	832-1565'},

				{'name':	'Judah	Battle',	'phone':	'(199)	834-7433'},

				{'name':	'Florence	Nielsen',	'phone':	'(769)	666-4576'},

				{'name':	'Orlando	Kirby',	'phone':	'(618)	110-3675'},

				{'name':	'Tucker	Webb',	'phone':	'(990)	295-9494'},

				{'name':	'Abel	Jacobs',	'phone':	'(840)	537-3516'},

				{'name':	'Ann	Crane',	'phone':	'(345)	876-2223'},

				...

]

Real	Python	Part	1:	Introduction	to	Python

256More	Practice

https://docs.python.org/3.5/library/re.html#re.compile

Write	a	Python	script	called	phone-book-fun.py	to	find	all	the	people	with	the	last	name
"Hardy"	or	a	first	name	starting	with	the	letter	J.	Output	their	first	names,	last	names,	and
phone	numbers.

Real	Python	Part	1:	Introduction	to	Python

257More	Practice

Assignment:	Data	cleaning	with	regular
expressions
Your	assignment	is	simple:	with	Sublime	Text	(or	your	favorite	text	editor	that	supports
regular	expression),	use	the	Find	and	Replace	tools	along	with	regular	expressions	to
turn	_sloppy_data.tsv	into	_clean_data.tsv.

NOTE	The	answers	will	be	displayed	in	Sublime	Text.	If	you	are	moving	on	to	the
next	courses,	you	will	need	to	use	Sublime	Text	or	something	similar,	so	it's	a
good	idea	to	download	it	now.	There	are	other	text	editors	that	support	regular
expressions	such	as	TextWrangler	for	Mac	and	Notepad++	for	Windows.

sloppy_data.tsv	is	essentially	just	a	tab-separated	value	(TSV)	file	that	includes
unnecessary	blank	lines	and	spaces.	Right	now,	it's	difficult	to	open	correctly	in	older
versions	of	Microsoft	Excel.	Although	there	are	only	twenty	rows,	which	wouldn't	take	too
long	to	correct	by	hand,	pretend	this	has	20,000	rows.	That	would	not	be	fun	to	manually
fix;	instead,	you'd	want	to	automate	it	-	which	is	exactly	why	we're	going	to	use	regular
expressions.	Make	the	following	changes:

Remove:

1.	 Blank	lines
2.	 Spaces	from	the	beginning	of	each	line
3.	 Bracketed	numbers	(e.g.,		[1])
4.	 The	first	column	of	numbers
5.	 	Inc.	,		,	Inc.	,		Inc	,	and		Incorporated	
6.	 Space	between	the	area	code,		(XXX)	,	and	the	phone	number,		XXX-XXXX	

Before	jumping	into	the	assignment,	let's	take	a	look	at	a	quick	example.	Open	your	text
editor	and	add	"N.Y.C"	to	a	blank	file.	Now,	using	regular	expressions,	replace	"N.Y.C"
with	"NYC".

To	do	this	in	Sublime	text,	click	Find	then	Replace.	Enter	the	regular	expression		\.	
into	the	Find	field.	Then	leave	the	Replace	field	blank.	This	will	replace	periods	with
nothing,	which	is	what	we	want.	Before	you	click	replace,	activate	regex	search:

Real	Python	Part	1:	Introduction	to	Python

258Assignment:	Data	cleaning	with	regular	expressions

http://www.sublimetext.com/

Now	simply	click	replace	all.	You	should	now	see	"NYC".	Do	you	know	why	we	had	to
use		\.		instead	of	just		.	?	A		.		is	already	a	special	character	in	regex,	so	we	need	to
escape	it	using	a	backslash.	Adding	the	backslash	character	right	before	the	period
made	regex	interpret	it	as	an	actual	period	instead	of	a	special	character	itself.

Okay,	have	a	go	at	the	assignment.	If	you	need	help	with	the	regular	expression,	check
out	the	regex_answers.txt	file.

Real	Python	Part	1:	Introduction	to	Python

259Assignment:	Data	cleaning	with	regular	expressions

Assignment:	Reviewing	regular	expressions
1.	 Copy	the	code	below	and	save	it	as	regex_review.py.
2.	 Run	the	file.	All		print		statements	return		False	.
3.	 Modify	the	variables	so	that	all	of	the		print		statements	return		True	.

zero	=	"Real	Ruby"

one	=	"5/25/14"

two	=	"A99	9AA"

three	=	r''

four	=	"6.76"

five	=	["happy","birthday"]

six	=	r'\.(doc)$'

seven	=	"My	email	is	michael@mherman.org"

#	DO	NOT	CHANGE	ANYTHING	BELOW	THIS	LINE	#

#	--------------------------------------	#

print("zero:		{}".format(zero	==	re.search(r'[P].*',	"This	is	Real	Python").group()))

print("one:			{}".format(one	==	re.search(r'\d{1,2}\/\d{1,2}\/\d{4}',	"5/25/2014").)group())

print("two:			{}".format(two	==	re.match()

				r'[A-Z]([A-Z](\d{1,2}|\d[A-Z])|\d{1,2})\s\d[A-Z]{2}',

				"A88	8AA",

				re.VERBOSE

).group())

print("three:	{}".format(bool(re.search(three,	"B4c	r79").group())))

print("four:		{}".format(bool(re.search(r'\$[0-5]\.\d\d',	four))))

print("five:		{}".format(bool(re.search(r'\ha{4,10}ppy\b',	five[0]))))

files	=	['test.doc',	'test.odt',	'test.ddt',	'doc',	'testodt',	'test.doc']

matched_files	=	[file	for	file	in	files	if	re.search(six,	file)]

print("six:			{}".format(len(matched_files)	==	3))

email_regex	=	r'\w+@\w+\.(com|org|edu|net)'

text	=	"My	email	is	michael@mherman.org"

redacted_text	=	re.sub(email_regex,	'(email	redacted)',	text)

print("seven:	{}".format(seven	==	redacted_text))

For	more	examples	and	documentation,	check	out	Python	Module	of	the	Week's	post	on
regular	expressions.

Real	Python	Part	1:	Introduction	to	Python

260Assignment:	Reviewing	regular	expressions

http://pymotw.com/2/re/

Appendix	C:	Primer	on	Object-Oriented
Programming
Up	until	now,	we	have	structured	our	programs	around	functions	utilizing	an	approach	to
programming	called	procedural	programming.	This	approach	is	like	a	recipe	in	that	it
provides	a	set	of	steps,	in	the	form	of	functions	and	code	blocks,	which	flow	sequentially
in	order	to	complete	a	task.

The	other	major	paradigm	is	objected-oriented	programming	which	provides	a	means	of
structuring	programs	so	that	properties	and	behaviors	are	bundled	into	individual
objects.	For	instance,	an	object	could	represent	a	person	with	a	name	property,	age,
address,	etc.,	with	behaviors	like	walking,	talking,	breathing,	and	running.	Or	an	email
with	properties	like	recipient	list,	subject,	body,	etc.,	and	behaviors	like	adding
attachments	and	sending.	Put	another	way,	object-oriented	programming	is	an	approach
for	modeling	concrete,	real-world	things	like	cars	as	well	as	relations	between	things	like
companies	and	employees,	students	and	teachers,	etc.

The	key	takeaway	is	that	objects	are	at	the	center	of	the	object-oriented	programming
paradigm,	not	only	representing	the	data,	as	in	procedural	programming,	but	in	the
overall	structure	of	the	program	as	well.

NOTE:	Since	Python	is	a	multi-paradigm	programming	language,	you	can	choose
the	paradigm	that	best	suits	the	problem	at	hand,	mix	different	paradigms	in	one
program,	and/or	switch	from	one	paradigm	to	another	as	your	program	evolves.

Real	Python	Part	1:	Introduction	to	Python

261Appendix	C:	Primer	on	Object-Oriented	Programming

http://en.wikipedia.org/wiki/Programming_paradigm

Classes
Focusing	first	on	the	data,	each	thing	or	object	is	an	instance	of	some	class.

The	primitive	data	structures	like	numbers,	strings,	and	lists	are	designed	to	represent
simple	things	like	the	cost	of	something,	the	name	of	a	poem,	and	your	favorite	colors,
respectively.	They've	worked	well	up	until	this	point.

What	if	you	wanted	to	represent	something	much	more	complicated?	For	example,	let's
say	you	wanted	to	track	a	number	of	different	animals.	If	you	used	a	list,	the	first	element
could	be	the	animal's	name	while	the	second	element	could	represent	its	age.	How
would	you	know	which	element	is	supposed	to	be	which?	What	if	you	had	100	different
animals?	Are	you	certain	each	animal	has	both	a	name	and	an	age,	and	so	forth?	What
if	you	wanted	to	add	other	properties	to	these	animals?	This	lacks	organization,	and	it's
the	exact	need	for	classes.

Classes	are	used	to	create	new	user-defined	data	structures	that	contain	arbitrary
information	about	something.	In	the	case	of	an	animal,	we	could	create	an		Animal()	
class	to	track	properties	about	the	Animal	like	the	name	and	age.

It's	important	to	note	that	a	class	just	provides	structure	-	it's	a	blueprint	for	how
something	should	be	defined,	but	it	doesn't	actually	provide	any	real	content	itself.	The
	Animal()		class	may	specify	that	the	name	and	age	are	necessary	for	defining	an
animal,	but	it	will	not	actually	state	what	a	specific	animal's	name	or	age	is.

It	may	help	to	think	of	a	class	as	an	idea	for	how	something	should	be	defined.

Real	Python	Part	1:	Introduction	to	Python

262Classes

Instances
While	the	class	is	the	blueprint,	an	instance	is	a	copy	of	the	class	with	actual	values,
literally	an	object	belonging	to	a	specific	class.	It's	not	an	idea	anymore;	it's	an	actual
animal,	like	a	dog	named	Roger	who's	eight	years	old.

Put	another	way,	a	class	is	like	a	form	or	questionnaire.	It	defines	the	needed
information.	After	you	fill	out	the	form,	your	specific	copy	is	an	instance	of	the	class;	it
contains	actual	information	relevant	to	you.	You	can	fill	out	multiple	copies	to	create
many	different	instances,	but	without	the	form	as	a	guide,	you	would	be	lost,	not	knowing
what	information	is	required.	Thus,	before	you	can	create	individual	instances	of	an
object,	we	must	first	specify	what	is	needed	by	defining	a	class.

Real	Python	Part	1:	Introduction	to	Python

263Instances

Define	a	Class
Defining	a	class	is	simple:

class	Dog(object):

				pass

You	start	with	the		class		keyword	to	indicate	that	you	are	creating	a	class,	then	you	add
the	name	of	the	class	(using	CamelCase	notation,	starting	with	a	capital	letter),	and
finally	add	the	class	that	the	you	are	inheriting	from	in	parentheses	(more	on	this	below).
As	well,	we	used	the	key	word		pass	.	This	is	very	often	used	as	a	place	holder	where
code	will	eventually	go.	It	allows	us	to	run	this	code	without	throwing	an	error.

Instance	Attributes

All	classes	create	objects,	and	all	objects	contain	characteristics	called	attributes
(referred	to	as	properties	in	the	opening	paragraph).	Use	the		__init__()		method	to
initialize	(e.g.,	specify)	an	object's	initial	attributes	by	giving	them	their	default	value	(or
state).	This	method	must	have	at	least	one	argument	as	well	as	the		self		variable,
which	refers	to	the	object	itself	(e.g.,	Dog).

class	Dog(object):

				#	Initializer	/	Instance	Attributes

				def	__init__(self,	name,	age):

								self.name	=	name

								self.age	=	age

In	the	case	of	our		Dog()		class,	each	dog	has	a	specific	name	and	age,	which	is
obviously	important	to	know	for	when	you	start	actually	creating	different	dogs.
Remember:	the	class	is	just	for	defining	the	Dog,	not	actually	creating	instances	of
individual	dogs	with	specific	names	and	ages;	we'll	get	to	that	shortly.

Similarly,	the		self		variable	is	also	an	instance	of	the	class.	Since	instances	of	a	class
have	varying	values	we	could	state		Dog.name	=	name		rather	than		self.name	=	name	.	But
since	not	all	dogs	share	the	same	name,	we	need	to	be	able	to	assign	different	values	to
different	instances.	Hence	the	need	for	the	special		self		variable,	which	will	help	to
keep	track	of	individual	instances	of	each	class.

Real	Python	Part	1:	Introduction	to	Python

264Define	a	Class

NOTE:	You	will	never	have	to	call	the		__init__()		method;	it	gets	called
automatically	when	you	create	a	new	'Dog'	instance.

Class	Attributes

While	instance	attributes	are	specific	to	each	object,	class	attributes	are	the	same	for	all
instances	-	which	in	this	case	is	all	dogs.

class	Dog(object):

				#	Class	Attribute

				species	=	'mammal'

				#	Initializer	/	Instance	Attributes

				def	__init__(self,	name,	age):

								self.name	=	name

								self.age	=	age

So	while	each	dog	has	a	unique	name	and	age,	every	dog	will	be	a	mammal.

Let's	create	some	dogs...

Real	Python	Part	1:	Introduction	to	Python

265Define	a	Class

Instantiating
Instantiating	is	a	fancy	term	for	creating	a	new,	unique	instance	of	a	class.

For	example:

>>>	class	Dog(object):

...					pass

...

>>>	Dog()

<__main__.Dog	object	at	0x1004ccc50>

>>>	Dog()

<__main__.Dog	object	at	0x1004ccc90>

>>>	a	=	Dog()

>>>	b	=	Dog()

>>>	a	==	b

False

>>>

We	started	by	defining	a	new		Dog()		class,	then	created	two	new	dogs,	each	assigned
to	different	objects.	So,	to	create	an	instance	of	a	class,	you	use	the	the	class	name,
followed	by	parentheses.	Then	to	demonstrate	that	each	instance	is	actually	different,
we	instantiated	two	more	dogs,	assigning	each	to	a	variable,	then	tested	if	those
variables	are	equal.

What	do	you	think	the	type	of	a	class	instance	is?

>>>	class	Dog(object):

...					pass

...

>>>	a	=	Dog()

>>>	type(a)

<type	'instance'>

>>>

Let's	look	at	a	slightly	more	complex	example...

Real	Python	Part	1:	Introduction	to	Python

266Instantiating

class	Dog(object):

				#	Class	Attribute

				species	=	'mammal'

				#	Initializer	/	Instance	Attributes

				def	__init__(self,	name,	age):

								self.name	=	name

								self.age	=	age

#	Instantiate	the	Dog	object

philo	=	Dog("Philo",	5)

mikey	=	Dog("Mikey",	6)

#	Access	the	instance	attributes

print("{}	is	{}	and	{}	is	{}.".format(

				philo.name,	philo.age,	mikey.name,	mikey.age))

#	Is	Philo	a	mammal?

if	philo.species	==	"mammal":

				print("{0}	is	a	{1}!".format(philo.name,	philo.species))

NOTE:	Notice	how	we	use	dot	notation	to	access	attributes	from	each	object.

Save	this	as	dog_class.py,	then	run	the	program.	You	should	see:

Philo	is	5	and	Mikey	is	6.

Philo	is	a	mammal!

What's	going	on?

We	created	a	new	instance	of	the		Dog()		class	and	assigned	it	to	the	variable		philo	.
We	then	passed	it	two	arguments,		"Philo"		and		5	,	which	represent	that	dog's	name
and	age,	respectively.	These	attributes	are	passed	to	the		__init__		method,	which	gets
called	any	time	you	create	a	new	instance,	attaching	the	name	and	age	to	the	object.
You	might	be	wondering	why	we	didn't	have	to	pass	in	the		self		argument.	This	is
Python	magic;	when	you	create	a	new	instance	of	the	class,	Python	automatically
determines	what		self		is	(a	Dog	in	this	case)	and	passes	it	to	the		__init__		method.

Review	exercises:

Real	Python	Part	1:	Introduction	to	Python

267Instantiating

1.	 Using	the	same		Dog()		class,	instantiate	three	new	dogs,	each	with	a	different	age.
Then	write	a	function	called,		get_biggest_number()	,	that	takes	any	number	of	ages
(*args)	and	returns	the	oldest	one.	Then	output	the	age	of	the	oldest	dog	like	so:

	The	oldest	dog	is	7	years	old.

Save	this	file	as	oldest_dog.py.

Real	Python	Part	1:	Introduction	to	Python

268Instantiating

Instance	Methods
Instance	methods	are	defined	inside	a	class	and	are	used	to	get	the	contents	of	an
instance.	They	can	also	be	used	to	perform	operations	with	the	attributes	of	our	objects.
Like	the		__init__		method,	the	first	argument	is	always		self	:

class	Dog(object):

				#	Class	Attribute

				species	=	'mammal'

				#	Initializer	/	Instance	Attributes

				def	__init__(self,	name,	age):

								self.name	=	name

								self.age	=	age

				#	instance	method

				def	description(self):

								return	"{}	is	{}	years	old".format(self.name,	self.age)

				#	instance	method

				def	speak(self,	sound):

								return	"{}	says	{}".format(self.name,	sound)

#	Instantiate	the	Dog	object

mikey	=	Dog("Mikey",	6)

#	call	our	instance	methods

print(mikey.description())

print(mikey.speak("Gruff	Gruff"))

Save	this	as	dog_instance_methods.py,	then	run	it:

Mikey	is	6	years	old

Mikey	says	Gruff	Gruff

In	the	latter	method,		speak()	,	we	are	defining	behavior.	What	other	behaviors	could
you	assign	to	a	dog?	Look	back	to	the	beginning	paragraph	to	see	some	example
behaviors	for	other	objects.

Modifying	Attributes

You	can	change	the	value	of	attributes	based	on	some	behavior:

Real	Python	Part	1:	Introduction	to	Python

269Instance	Methods

>>>	class	Email(object):

...					is_sent	=	False

...					def	send_email(self):

...									self.is_sent	=	True

...

>>>	my_email	=	Email()

>>>	my_email.is_sent

False

>>>	my_email.send_email()

>>>	my_email.is_sent

True

>>>

Here,	we	added	a	method	to	send	an	email,	which	updates	the		is_sent		variable	to
	True	.

Real	Python	Part	1:	Introduction	to	Python

270Instance	Methods

Inheritance
Inheritance	is	the	process	by	which	one	class	takes	on	the	attributes	and	methods	of
another.	Newly	formed	classes	are	called	child	classes,	and	the	classes	that	child
classes	are	derived	from	are	called	parent	classes.	It's	important	to	note	that	child
classes	override	or	extend	the	functionality	(e.g.,	attributes	and	behaviors)	of	parent
classes.	In	other	words,	child	classes	inherit	all	of	the	parent's	attributes	and	behaviors
but	can	also	specify	different	behavior	to	follow.	The	most	basic	type	of	class	is	an
	object	,	which	generally	all	other	classes	inherit	as	their	parent.

Dog	Park	Example

Let's	pretend	that	we're	at	a	dog	park.	There	are	multiple	Dog	objects	engaging	in	Dog
behaviors,	each	with	different	attributes.	In	regular-speak	that	means	some	dogs	are
running,	while	some	are	stretching	and	some	are	just	watching	other	dogs.	Furthermore,
each	dog	has	been	named	by	its	owner	and,	since	each	dog	is	living	and	breathing,
each	ages.

What's	another	way	to	differentiate	one	dog	from	another?	How	about	the	dog's	breed:

>>>	class	Dog(object):

...					def	__init__(self,	breed):

...									self.breed	=	breed

...

>>>	spencer	=	Dog("German	Shepard")

>>>	spencer.breed

'German	Shepard'

>>>	sara	=	Dog("Boston	Terrier")

>>>	sara.breed

'Boston	Terrier'

>>>

Each	breed	of	dog	has	slightly	different	behaviors.	To	take	these	into	account,	let's
create	separate	classes	for	each	breed.	These	are	child	classes	of	the	parent	Dog	class.

Child	classes:	Extending	the	functionality	of	the	parent
class

Create	a	new	file	called	dog_inheritance.py:

Real	Python	Part	1:	Introduction	to	Python

271Inheritance

#	Parent	class

class	Dog(object):

				#	Class	attribute

				species	=	'mammal'

				#	Initializer	/	Instance	attributes

				def	__init__(self,	name,	age):

								self.name	=	name

								self.age	=	age

				#	instance	method

				def	description(self):

								return	"{}	is	{}	years	old".format(self.name,	self.age)

				#	instance	method

				def	speak(self,	sound):

								return	"{}	says	{}".format(self.name,	sound)

#	child	class	(inherits	from	Dog	class)

class	RussellTerrier(Dog):

				def	run(self,	speed):

								return	"{}	runs	{}".format(self.name,	speed)

#	child	class	(inherits	from	Dog	class)

class	Bulldog(Dog):

				def	run(self,	speed):

								return	"{}	runs	{}".format(self.name,	speed)

#	child	classes	inherit	attributes	and

#	behaviors	from	the	parent	class

jim	=	Bulldog("Jim",	12)

print	jim.description()

#	child	classes	have	specific	attributes

#	and	behaviors	as	well

print	jim.run("slowly")

Read	the	comments	aloud	as	you	work	through	this	program	to	help	you	understand
what's	happening,	then	before	you	run	the	program,	see	if	you	can	predict	the	expected
output.

You	should	see:

Real	Python	Part	1:	Introduction	to	Python

272Inheritance

Jim	is	12	years	old

Jim	runs	slowly

We	haven't	added	any	special	attributes	or	methods	to	differentiate	a		RussellTerrier	
from	a		Bulldog	,	but	since	they're	now	two	different	classes,	we	could	for	instance	give
them	different	class	attributes	defining	their	respective	speeds.

Parent	vs.	Child	Class

The		isinstance()		function	is	used	to	determine	if	an	instance	is	also	an	instance	of	a
certain	parent	class.

Save	this	as	dog_isinstance.py:

#	Parent	class

class	Dog(object):

				#	Class	attribute

				species	=	'mammal'

				#	Initializer	/	Instance	attributes

				def	__init__(self,	name,	age):

								self.name	=	name

								self.age	=	age

				#	instance	method

				def	description(self):

								return	"{}	is	{}	years	old".format(self.name,	self.age)

				#	instance	method

				def	speak(self,	sound):

								return	"{}	says	{}".format(self.name,	sound)

#	child	class	(inherits	from	Dog()	class)

class	RussellTerrier(Dog):

				def	run(self,	speed):

								return	"{}	runs	{}".format(self.name,	speed)

#	child	class	(inherits	from	Dog()	class)

class	Bulldog(Dog):

				def	run(self,	speed):

								return	"{}	runs	{}".format(self.name,	speed)

#	child	classes	inherit	attributes	and

Real	Python	Part	1:	Introduction	to	Python

273Inheritance

#	behaviors	from	the	parent	class

jim	=	Bulldog("Jim",	12)

print(jim.description())

#	child	classes	have	specific	attributes

#	and	behaviors	as	well

print(jim.run("slowly"))

#	is	jim	an	instance	of	Dog()?

print(isinstance(jim,	Dog))

#	is	julie	an	instance	of	Dog()?

julie	=	Dog("Julie",	100)

print(isinstance(julie,	Dog))

#	is	johnny	walker	an	instance	of	Bulldog()

johnnywalker	=	RussellTerrier("Johnny	Walker",	4)

print(isinstance(johnnywalker,	Bulldog))

#	is	julie	and	instance	of	jim?

print(isinstance(julie,	jim))

Output:

('Jim',	12)

Jim	runs	slowly

True

True

False

Traceback	(most	recent	call	last):

		File	"dog_isinstance.py",	line	50,	in	<module>

				print	isinstance(julie,	jim)

TypeError:	isinstance()	arg	2	must	be	a	class,	type,	or	tuple	of	classes	and	types

Make	sense?	Both		jim		and		julie		are	instances	of	the		Dog()		class,	while
	johnnywalker		is	not	an	instance	of	the		Bulldog()		class.	Then	as	a	sanity	check,	we
tested	if		julie		is	an	instance	of		jim	,	which	is	impossible	since		jim		is	an		instance	
of	a	class	rather	than	a	class	itself	-	hence	the	reason	for	the		TypeError	.

Child	classes:	Overriding	the	functionality	of	the	parent
class

Remember	that	child	classes	can	also	override	attributes	and	behaviors	from	the	parent
class.	For	examples:

Real	Python	Part	1:	Introduction	to	Python

274Inheritance

>>>	class	Dog(object):

...					species	=	'mammal'

...

>>>	class	SomeBreed(Dog):

...					pass

...

>>>	class	SomeOtherBreed(Dog):

...					species	=	'reptile'

...

>>>	frank	=	SomeBreed()

>>>	frank.species

'mammal'

>>>	beans	=	SomeOtherBreed()

>>>	beans.species

'reptile'

>>>

The		SomeBreed()		class	inherits	the		species		from	the	parent	class,	while	the
	SomeOtherBreed()		class	overrides	the		species	,	setting	it	to		reptile	.

Review	exercises:

1.	 Create	a		Pet()		class	that	holds	instances	of	dogs;	this	class	is	completely
separate	from	the		Dog()		class.	In	other	words,	the		Dog()		class	does	not	inherit
from	the		Pet()		class.	Then	assign	three	dog	instances	to	the		Pet()		class.	Start
with	the	following	code	below.	Save	the	file	as	pet_class.py.	Your	output	should	look
like	this:

	I	have	3	dogs.	Tom	is	6.	Mike	is	7.	Larry	is	9.	And	they're	all	mammals,	of	course.

Starter	code:

Real	Python	Part	1:	Introduction	to	Python

275Inheritance

	#	Parent	class

	class	Dog(object):

					#	Class	attribute

					species	=	'mammal'

					#	Initializer	/	Instance	attributes

					def	__init__(self,	name,	age):

									self.name	=	name

									self.age	=	age

					#	instance	method

					def	description(self):

									return	"{}	is	{}	years	old".format(self.name,	self.age)

					#	instance	method

					def	speak(self,	sound):

									return	"{}	says	{}".format(self.name,	sound)

	#	child	class	(inherits	from	Dog()	class)

	class	RussellTerrier(Dog):

					def	run(self,	speed):

									return	"{}	runs	{}".format(self.name,	speed)

	#	child	class	(inherits	from	Dog()	class)

	class	Bulldog(Dog):

					def	run(self,	speed):

									return	"{}	runs	{}".format(self.name,	speed)

2.	 Using	the	same	file,	add	a	class	attribute	of		is_hungry	=	True		to	the		Dog()		class.
Then	add	a	method	called		eat()		which	changes	the	value	of		is_hungry'	to	False`
when	called.	Figure	out	the	best	way	to	feed	each	dog	and	then	output	"My	dogs
are	hungry."	if	all	are	hungry	or	"My	dogs	are	not	hungry."	if	all	are	not	hungry.	The
final	output	should	look	like	this:

	I	have	3	dogs.	Tom	is	6.	Mike	is	7.	Larry	is	9.	And	they're	all	mammals,	of	course.	My	dogs	are	not	hungry.

3.	 Next,	add	a		walk()		method	to	both	the		Pet()		and		Dog()		classes	so	that	when
you	call	the	method	on	the		Pet()		class,	each	dog	instance	assigned	to	the		Pet()	
class	will		walk()	.	Save	this	as	dog_walking.py.	This	is	slightly	more	difficult.	Start
by	implementing	the	method	in	the	same	manner	as	the		speak()		method.	As	for
the	method	in	the		Pet()		class,	you	will	need	to	iterate	through	the	list	of	dogs,	then
call	the	method	itself.	The	output	should	look	like	this:

Real	Python	Part	1:	Introduction	to	Python

276Inheritance

	Tom	is	walking!

	Mike	is	walking!

	Larry	is	walking!

Real	Python	Part	1:	Introduction	to	Python

277Inheritance

Assignment:	Comprehension	check
Answer	the	following	questions:

1.	 What's	a	class?
2.	 What's	an	instance?
3.	 What's	the	relationship	between	a	class	and	an	instance?
4.	 What's	the	Python	syntax	used	for	defining	a	new	class?
5.	 What's	the	spelling	convention	for	a	class	name?
6.	 How	do	you	instantiate,	or	create	an	instance	of,	a	class?
7.	 How	do	you	access	the	attributes	and	behaviors	of	a	class	instance?
8.	 What's	a	method?
9.	 What's	the	purpose	of		self	?
10.	 What's	the	purpose	of	the		__init__		method?
11.	 Describe	how	inheritance	helps	prevent	code	duplication.
12.	 Can	child	classes	override	properties	of	their	parents?

Real	Python	Part	1:	Introduction	to	Python

278Assignment:	Comprehension	check

Assignment:	Model	a	farm
In	this	assignment,	you'll	create	a	simplified	model	of	a	farm.	As	you	work	through	this
assignment,	keep	in	mind	that	there	are	a	number	of	correct	answers.	The	focus	of	this
assignment	is	less	about	the	Python	class	syntax	and	more	about	software	design	in
general,	which	is	highly	subjective.	That	said,	if	you	still	have	syntax	questions	or	want
more	practice,	you	should	go	through	the	Introduction	to	Classes	track	from
Codecademy	to	further	your	understanding	of	the	Python	class	syntax.

Before	you	write	any	code,	grab	a	pen	and	paper	and	sketch	out	a	model	of	your	farm,
identifying	classes,	attributes,	and	behaviors.	Think	about	inheritance.	How	can	you
prevent	code	duplication?	Take	the	time	to	work	through	as	many	iterations	as	you	feel
are	necessary.

If	you	want,	scan	or	take	a	photo	of	your	model(s)	and	email	them	to	us	at
info@realpython.com	to	get	feedback	on	the	design	and	structure	of	your	program.

The	actual	requirements	are	open	to	interpretation,	but	try	to	adhere	to	these	guidelines:

1.	 You	should	have	at	least	four	classes:	The	parent		Animal()		class,	and	then	at	least
three	child	animal	classes	that	inherit		Animal()	.

2.	 Each	class	should	have	a	few	attributes	and	at	least	one	method,	which	details
some	behavior	as	appropriate	for	either	all	animals	or	a	single	animal	-	i.e.,	walking
or	running,	talking,	sleeping,	etc.

3.	 Keep	it	simple.	Utilize	inheritance.	Make	sure	you	output	details	about	the	animals
and	their	behaviors.

After	you	finish,	compare	your	solution	to	ours.	Find	areas	where	you	could	improve.
Then	wait	a	few	days	and	do	the	problem	over	again...	and	again...	and	again...	Good
luck!

Real	Python	Part	1:	Introduction	to	Python

279Assignment:	Model	a	farm

http://www.codecademy.com/courses/python-intermediate-en-WL8e4/0/1

Assignment:	Github	with	class
Create	a	new	class	called		Github()	,	which	has	two	attributes:

1.	 	username		-	the	Github	username
2.	 	base_url		-	the	base	URL	for	the	Github	API	(https://developer.github.com/v3/)

Make	sure	to	import		urlopen		from	the	appropriate		urllib		library	so	that	you	can	make
the	API	call:

from	urllib.request	import	Request,	urlopen

Finally,	add	two	instance	methods:

1.	 	get_user_info()		-	returns	the	Github	user	info	in	JSON	from
https://api.github.com/users/:USERNAME

2.	 	get_user_repos()		-	returns	the	Github	user	repos	in	JSON	from
https://api.github.com/users/:USERNAME/repos

Make	sure	to	create	at	least	one	instance	and	call	the	methods	to	get	the	user	info	and
repos.

Real	Python	Part	1:	Introduction	to	Python

280Assignment:	Github	with	class

https://developer.github.com/v3/
https://api.github.com/users/:USERNAME
https://api.github.com/users/:USERNAME/repos

Conclusion
You	should	now	know	what	classes	are,	why	you	would	want	or	need	to	use	them,	and
how	to	create	both	parent	and	child	classes	to	better	structure	your	programs.	This	is	not
easy	subject	matter,	and	to	be	honest,	most	of	the	programs	that	you	will	build	in	the
next	course	will	utilize	procedural	programming.	The	last	course	focuses	much	more	on
object-oriented	programming,	though.	Fortunately,	you	have	plenty	of	time	to	practice
until	that	point.

Since	the	syntax	isn't	the	most	intuitive,	you	can	get	more	practice	using	classes	in	our
Codecademy	exercise	where	we	have	you	build	different	types	of		Car()		classes	with
various	attributes	and	methods.	For	further	explanation	of	objected-oriented
programming,	please	consult	these	resources:

1.	 Official	Python	documentation
2.	 Dive	into	Python
3.	 Learn	Python	the	Hard	Way

Real	Python	Part	1:	Introduction	to	Python

281Conclusion

http://www.codecademy.com/courses/python-intermediate-en-egNXj/
https://docs.python.org/3.5/tutorial/classes.html
http://www.diveintopython3.net/iterators.html#defining-classes
http://learnpythonthehardway.org/book/ex40.html

Acknowledgements
This	book	would	not	have	been	possible	without	the	help	and	support	of	so	many	friends
and	colleagues.

For	providing	valuable	advice	and	candid	feedback,	I	would	like	to	thank	Brian,	Peter,
Anna,	Doug,	and	especially	Sofia,	who	by	now	has	probably	read	this	material	more
times	than	I	have.	Thanks	as	well	to	Josh	for	taking	the	time	to	share	his	valuable
experience	and	insights.

A	special	thanks	to	the	Python	Software	Foundation	for	allowing	me	to	graffiti	their	logo.

Finally,	my	deepest	thanks	to	all	of	my	Kickstarter	backers	who	took	a	chance	on	this
project.	I	never	expected	to	gather	such	a	large	group	of	helpful,	encouraging	people;	I
truly	believe	that	my	Kickstarter	project	webpage	might	be	one	of	the	nicest	gatherings
of	people	that	the	Internet	has	ever	experienced.

I	hope	that	all	of	you	will	continue	to	be	active	in	the	community,	asking	questions	and
sharing	tips.	Your	feedback	has	already	shaped	this	course	and	will	continue	to	help	me
make	improvements	in	future	editions,	so	I	look	forward	to	hearing	from	all	of	you.

This	book	would	never	have	existed	without	your	generous	support:

Benjamin	Bangsberg,	JT,	Romer	Magsino,	Daniel	J	Hall,	John	Mattaliano,	Jordan	"DJ
Rebirth"	Jacobs,	Al	Grimsley,	Ralf	Huelsmann,	Germany,	Amanda	Pingel	Ramsay,
Edser,	Andrew	"Steve"	Abrams,	Diego	Somarribas	B.,	John	McGrath,	Zaw	Mai	Tangbau,
Florian	Petrikovics,	Victor	Pera	(Zadar,	Croatia),	xcmbuck@yahoo.com,	Daniel	R.
Lucas,	Matthew	C,	Duda,	Kenneth,	Helena,	Jason	Kaplan,	Barry	Jones,	Steven	Kolln,
Marek	Rewers,	Andrey	Zhukov,	Dave	Schlicher,	Sue	Anne	Teo,	Chris	Forrence,	Toby
Gallo,	Jakob	Campbell,	Christian	"DisOrd3r"	Johansson,	Steve	Walsh,	Joost	Romanus,
Jozsef	Tschosie	Kovacs,	Back	Kuo,	James	Anselm,	Christian	Gerbrandt,	Mike
StoopsMichael	A	Lundsveen,	David	R.	Bissonnette,	Jr.,	Geoff	Mason,	Joao	da	Silveira,
Jason	Ian	Smith,	Anders	Kring,	Ruddi	Oliver	Bodholdt	Dal,	edgley,	Richard	Japenga,
Jake,	Ken	Harney,	Brandon	Hall,	B.	Chao,	Chinmay	Bajikar,	Clint	LeClair,	Davin	Reid-
Montanaro,	Isaac	Yung,	Espen	Torseth,	Thomas	Hogan,	Nick	Poenn,	Eric	Vogel,	Jack
Salisbury,	James	Rank,	Jamie	Pierson,	Christine	Paluch,	Peter	Laws,	Ken	Hurst,	Patrick
"Papent"	Tennant,	Anshu	Prabhat,	Kevin	Wilkinson,	Joshua	Hunsberger,	Nicholas
Johnson,	Max	Woerner	Chase,	Justin	Hanssen,	pete.vargasmas@gmail.com,	James
Edward	Johnson,	Griffin	Jones,	Bob	Byroad,	Hagen	Dias,	Jerin	Mathew,	Jasper

Real	Python	Part	1:	Introduction	to	Python

282Acknowledgements

Blacketer,	Jonathan	Lundstrom,	Django	O	Gato,	Mathias	Ehret,	Interphase
Technologies,	Stanton	Hooley,	Jerome	P.,	Michael	Edwards,	Robert	Bownds,	Patrick
Corbett,	Akshay	Rao,	Hendricks	Weatherborne,	Werner	B,	Paul	May,	Ismail	Hassan,
Akash	Gordhan,	Brian	Joseph	Bixon,	Peter	Gorys,	Cydroiid,	Nicolas	Hauviller,	Jack
Carroll,	Dave	Kin,	Michael	Anaya,	Dave	Kilsheimer,	Jay,	Jake	Stambaugh,	Dustin	CS
Wagner,	Faridi	Qaium,	Michael	Ramos,	JimT,	Sven	Borer,	Locutus,	James	"Baker"
Stuart,	Chris	Browne,	Jose	Agraz,	Kasper	Rugaard,	Joseph	Klaszky,	Brandon	Cotton,	D,
Lucas	Derraugh,	S	Patterson,	Ian	Miles,	Chuck	McLellan,	JBo796,	D.J.Murray,	Tom
Randle,	Anna,	Navtej	Saggu,	Dylan	Brabec,	J	Caldwell,	Joseph	Tjon,	Andy	Bates,
Charles	Meyer,	Sebastian	Sahlin,	Michael	Phillips	-	Waves	&	Tidings,	Toh	Chee	Seng,
Garry	"Gorio"	Padua,	Eric	Wallmander,	Shazbot,	Diante	Edwards,	AlmostHuman,	Andy
E,	Matt	Stultz,	Eric	Koerner,	Gareth	Shippen,	Kendal	Edwards	Robert	Sholl,	ROdMX,
Kyle	Hinkle,	Timmy	Crawford,	Ron	W,	Trevor	Miller,	Drew	Kamthong,	Yatin	Mehta,
smashbro35,	Kelsey	Kaszas,	Mike,	Duppy,	Mikk	Kirstein,	Adib	Khoury,	Lou	Ward,	Milan
Janošik,	Benjamin	Schlageter,	Koen	Van	den	Eeckhout,	Richard	Wojtaszak,	Mathias
Brenner,	Magnus	Nygren,	Harrison	Tan,	Amin	Azam,	Chris	Awesome,	Andy	Welsh,	Kyle
Hughes,	J.	Owen,	Nick	Manganelli,	Ivan	Zamotokhin,	Liam	Jensz,	Matthew	Korytowski,
David	L	Sprague,	Philipp	Beckmann,	Lorenzo	R	V,	Miles	Wilkins,	Andrew	J.	Dimond,
Steve	Harris,	Will	Knott,	Odd	Magnus	Rosbach,	Juan	Hernaiz,	Tomoyuki	Sugihara,
Calum	Mackenzie,	JB,	Nick	G.,	Thomas	Perrella,	Ian	McGuire,	Neelfyn,	James	Rodgers,
Mark	Dixon,	Chezzas,	Jessica	Ledbetter,	Ariel	Fogel,	Davide	Varni,	Sasha	Brogan,	Clint
Myers,	Rob	Trimarco,	Samuel	Judd,	trademarques.co,	Stefan,	Jim	O.,	Simon
Hedegaard,	Ryan	Fagan,	Ed	Woods,	Iacton	Qruze,	Mentat,	Thomas	Clarke	-	NitroEvil,
Saym	Basheer,	Kevin	Spleid,	Evaristo	Ramos,	Jr.,	Grant	Lindsay,	Erin	I,	twistcraft,
Carter	Thayer,	Mark	Shocklee,	Gerard	Cochrane	Jr,	Michael	J	Carl,	Anthony	Allan,
Howard	Cheetham,	Ben	Piper,	Richard	Herwig,	Tyler	Piderit,	JimminiKin,	Robert	Ng,
Penguins	Are	From	Space,	James	L	Hays,	Kyle	K.,	Nicholas	J.	Atkins,	R.	Travis	Brown,
T	J	Woo,	Alexander	Arias,	C.S.Putnam,	Peter	Webb,	Dmitriy	Litvak,	Ciaran	Regan,
Warai	Otoko,	John	Langhoff,	andrew	brennan,	Andrew	Grosner,	jamorajj,	Adiel	Arvizu,
Mark	Norgren,	Eric	R.	Stoeckel,	Jr.,	Pedro	Gomez,	Chris	Conner,	@andersosthus,
Chandra	Nagaraja,	Jan	P.	Monsch,	Corra,	Trentyz,	Nicholas	Hehr,	manmoe,	Lam
Chuan	Chang	(Singapore),	Roy	G.	Biv,	David	Szymczak,	Ronald	Singletary,	Simone	F.,
Joyce	B	(Australia),	simon	grensted,	sebastien	dominati,	Stephen	T.	Truong,	Michele
Gargiulo,	Jonathan	@Ardua	Doyle,	Tommy	A.,	Samuel	Morgan,	Nir	Friedman,	Pasha
Kagan,	Gregory	Kurts,	B.Wold,	Brad	F.,	RobbieP,	Fernando	Varela,	Michael	Lebowitz,
Michael	T	Olivier,	A.	Backer,	Fredrik	Karlsson,	Halmstad,	Sweden,	Dave	Lewis,	Andreas
Matern,	Jon	Strom,	Max	Dayan,	Joh.Lummel	-	Germany,	Jigar	Patel,	Sean	R,	Elly	&
Andres,	Hong	Yi,	D	Carter,	Thomas	M.	Johnson,	Matthias	Keller,	Eirik	Bilet,	Daniel

Real	Python	Part	1:	Introduction	to	Python

283Acknowledgements

Otero,	Ted	Davidson,	Dougie	"Fresh	Fingers"	Friedman,	Amr	Metwally,	Dymatrix
Solutions,	Dylan	Demoe,	Turki	N.	Shahel,	Cory	S	Spoerl,	Ben	B,	Marc,	Kari,	Penelope,
and	Marylee	Evans,	Niklas	"Cartina"	Kallarsson,	Paul	W.,	B.	Gunaratnam,	Stephanie
Delgado,	coilercard,	Dave	TJ,	Robert	J.	Romero,	Matthew	Peterson,	Brant	Winter,
Darkdavy,	Zax	Tang,	Anthony	A	Greenwood	Jr.,	Zachary	Howard,	Hal,	John	A.	Booth,
Ranoka,	Larry	Younger,	Georg	Fischer	(@snorpey),	Thor	G.	Steinsli,	Frode,	Mike	and
Julia	Nelson,	code_more,	Hunter	Harris,	Terrence	DeBeatham,	Ryan	Wheeler,	Jerrid
D.C.	Fuehrer,	Remy	VINCENT,	Rob	Weatherly,	Simon	A,	Daniel	Y,	Andrzej	Wiktor,
Earthling:	one	of	6	billion	+	and	counting,	Apos	Croquelune,	Adam	Kim,	iTrain	Malaysia,
Madison	May,	William	F	Todoro,	Mark	Danbom,	Carlos	Anchia,	Rick	Chepeus,	R.	Klein,
Sebastian	Oort,	Brooks	Cutter,	Dylan	Hutchison,	Kilian	Riedl,	Tom	"Harry"	Mudway,	Al
Billings,	Andrii	Sudyn,	Andrew	O'Gorman,	ShaColby	Jackson,	Robert	Ovington,	Brandon
Usher,	Joshua	LeFever,	William	Miller,	T.	Siesmayer,	Niclas	Berndtsson,	Brian	Arbogast
&	Brynn	Arborico,	Roberto	Velez,	Matt	M.,	WDM,	vee	xiong,	John	Thayer,	Baron
Burkhart,	Nicholas	A.	DeLateur,	Ben	Hamilton,	Cole	Mercer,	Dougie	Nix,	Shaun	Walker,
Olof	Bengtson,	Marek	Belski,	Chris	Cannon,	Bob	Putnam,	Jeff	McMorris,	Timothy
Phillips,	Rodolfo	F.	Guzman,	Joe	Burgwin,	Andreas	Borgstrom,	Philip	Ratzsch,	Kostas
Sarafidis,	R.	Arteaga,	fullzero,	Petros	Ring,	Harold	Garron,	Thomas	"Gears"	Butler,	Neil
Broadley,	JPao,	Aviel	Mak,	Kjeld	Jensen,	I	P	Freely,	Arturo	Goicochea	Hoefken,	Leo
Sutedja,	Cameron	Kellett,	Werner	Beytel,	Muhammad	Khan,	Jason	Trogdon,	Dao	Tran,
Thomas	Juberg,	Andy	Nguyen,	Petr	Tomicek,	Erik	Rex,	Stephen	Meriwether,	Benjamin
Klasmer,	Derick	Schmidt,	Kyle	Thomas,	R.Nana,	Arpan	Bhowmik,	Jacob	A.	Thias,	Elliot,
Isaiah	St.	Pierre,	Josh	Milo	Drchuncks,	Dr.	Sam	N	Jaxsam,	Matthew	M.	McKee,	Kyle
Simmons,	Jason	Nell,	Darcy	Townsend,	Jesse	Houghton,	Evan	D.,	Marcel	Arnold,
Thomas	Siemens,	C	Hodgson,	Adrien	D.,	Bjørn	Spongsveen,	Jemma,	Ed	Matthews,	Nik
Mohd	Imran	-	Malaysia,	Jason	Weber,	JTR	Haldr,	Matthew	Ringman,	Yoshio	Goto,	Evan
Gary	Hecht,	Eric	L.,	Hannes	Hauer,	Robert	Mais,	Highland	Dryside	Rusnovs,	Michael
Torres,	Mike	Alchus,	Jonathan	L.	Martin,	Oliver	Graf,	David	Anspaugh,	Joe	Griesmer,
Garrett	Dunham,	Srujan	Kotikela,	Laurel	Richards,	Lovelesh,	Sarah	Guermond,	Brian
Canada,	PhD,	Assistant	Professor	of	Computational	Science,	University	of	South
Carolina	Beaufort,	Shao,	Antti	Kankaanpaa,	Carl	F.	Corneil,	Laird_Dave,	Nyholm	Family,
Brandon	Graham,	M.	A.	Merrell,	Kyle	Frazier,	PT_SD,	Travis	Corwith,	Elliot	Jobe,	A	R
Collins,	Ørjan	Sømme,	Jay	B	Robertson,	Jim	Matt,	Christopher	Holabird,	Ronny
Varghese,	Claudia	Foley,	Andrew	Simeon,	D	G,	Jay	V.	Schindler,	Douglas	Butler	AKA
SherpaDoug,	Jon	Perez,	Pieter	Maes,	Gabriel	McCann,	John	Holbrook,	Melissa	Cloud,
Inukai,	Henning	Fjellheim,	Jason	Tsang,	Juliovn,	Reagan	Short,	Carlos	Clavero
Aymerich,	Vaughan	Allan,	James	Dougherty,	Miles	Johnson,	Shirwin,	Thomas	Taimre,
Michael	Urhausen	Cody	C.	Foster,	Christoph	G.W.	Gertzen,	Mag,	Matt	Monach,	Tabor,

Real	Python	Part	1:	Introduction	to	Python

284Acknowledgements

Ashwin.Manthena,	Lance	Tully,	NoVuS	ReNoVaTiO,	Joshua	Broussard,	Laurence
Livermore,	Rob	Flavell,	Fabian	und	Holger	Winklbauer,	Adriano	Lo	conte,	Decio	Valeri,
Stephen	Ewell,	Erik	Zolan,	Dharm	Kapadia,	Esteban	Barrios,	Mehul,	Thomas	Fauser,
Nathan	Pinck,	Grant	P,	Gary,	Jonathan	Moisan,	David	Warshow,	Erica	Zahka,	Frederik
Laursen,	Piotr	Napiorkowski,	Chris	Webster,	James	Kobulyar,	Cobalt	Halley,	Dewey
Kang,	Fall,	Susan	Engle,	David	Garber,	Rebecka	Wallebom,	Pai	Siwamutita,	Joel
Gerstein,	Brant	Bagnall,	Mr.	Backer	7,	Cole	Smith,	Gary	Androphy,	Keith	L	Hudson,
Anthony	Jackman,	Regis	LUTTER,	Charles	Jurica,	Jose	Gleiser,	Mike	Henderson,
Khalid	M	AlNuaim,	Dan	"CidonaBoy"	Murphy,	BrianF84,	Gunnar	Wehrhahn,	Marc
Herzog,	Leon	Duckham,	Justin	S.,	DC,	Kit	Santa	Ana,	Tom	Pritchard,	Hamilton
Chapman,	Taylor	Daniels,	Andrew	Wood,	Tomer	Frid,	Peter	B.	Goode,	John	Ford,	Otto
Ho,	LCT,	WinDragon68,	Faber	M.,	Douglas	Davies,	Jacob	Mylet,	Niels	Gamsgaard
Frederiksen,	Mark	Greene,	Rob	Davarnia,	Alex,	Zabrina	W.,	William	Ochetski	Hellas,
Jose	I.	Rey,	Dustin	T.	Petersen,	A	Nemeth,	Praveen	Tipirneni,	Derek	Etheridge,	J.W.
Tam,	Andrei	George	Selembo,	Leo	Evans,	Sandu	Bogi	Nasse,	Christopher	J	Ruth,	Erin
Thomas,	Matt	Pham,	KMFS,	Todd	Fritz,	Brandon	R.	Sargent,	boo,	Lord	Sharvfish
Thargon	the	Destructor,	Kylie	"Shadow"	Stafford,	Edd	Almond,	Stanley,	Brandon	Dawalt,
Sebastian	Baum,	F.	Iqbal,	Mungo	Hossenfeffer,	Zubair	Waqar,	Matt	Russell,	Sam	Lau,
Jean-Pierre	Buntinx,	James	Giannikos,	Chris	Kimball,	Happy,	Nathan	Craike,
arieals@live.com,	Asad	Ansari,	J.	Rugged,	Stephanie	Johnston,	Shunji,	Mohammad
Ammar	Khan,	John-Eric	Dufour,	Brad	Keen,	Ricardo	Torres	de	Acha,	Denis	Mittakarin,
Jeffrey	de	Lange,	Stewart	C.	Annis,	Nicholas	Goguen,	Vipul	Shekhawat,	Daniel
Hutchison,	@lobstahcrushah,	Bjoern	Goretzki,	Hans	de	Wolf,	Ray	Barron,	Garrett
Jordan,	Benjamin	Lebsanft,	Alessandro	A.	Minali,	carlopezzi,	Patrick	Yang,	Kieran	Fung,
Niloc,	David	Duncan,	Tom	Naughton,	Barry	G.-A.	Wilson,	Dave	Clarke,	Shawn	Xu,
Kevin	D.	Dienst,	Durk	Diggler,	Marcus	Friesl,	Krisztina	J.,	V.	Darre,	Duane	Sibilly,	II,
Marije	Pierson,	Anco	van	Voskuilen,	Joey	van	den	Berg,	Gil	Nahmani,	Stephen	Yip,
Richard	Heying,	Patrick	Thornton,	Ali	AlOhali,	Eric	LeBlanc,	Clifton	Neff,	Steve
"Bofferbrauer"	Weidig,	Jacob	Hanshaw,	daedahl,	Lee	Aber,	Jan	Heimbrodt,	Aquib
Fateh,	Gary	Patton	Wolfe,	Jim	Long,	Št?panka	Šoustkova,	Logan	Ziegenfus,	Paul
Casagrande,	Jason	E	Joyner,	Yvonne	Caprini,	Grehg	Hilston,	Peter	Wang,	Ajay	Menon,
Jaya	Godavarthy,	Zack	Loveless,	Tim	Cupp,	VfishV,	Ansel	B,	Morgan	Hough,	Mauricio
R.	Cruz,	Ryan	Jolly,	Daryl	Walleck,	Derek	Mayer,	Dopest,	Jakesmiley,
LuminoCityGroup,	Jeff	Ngo,	Ronn	Trevino,	Adam	Wilson,	Ron	Collins,	Charles	M
Brumit,	Charles	Guerrero,	Adan	Juan	Chavez	Martinez,	Zakir	Hussain,	Jawhny	Cooke,
R.	George	Komoto,	Niko	Chiu,	Sean	Murphy,	M.	Neukirch,	Rob	Kaplan,	Boštjan	Košir,
modopo,	Kenny	"KeDeZ"	Hernandez,	Hector	Gracia,	Eric	Finkenbiner,	Achal	Gautam,
Stephane	QUENARD,	Wee	Wing	Kwong,	Alan	Carpilovsky,	roland	kohler

Real	Python	Part	1:	Introduction	to	Python

285Acknowledgements

(mondtagskind),	Jim	Brasic,	Marjan	Golob,	Gareth	Casey,	Zainab	Al-Ansari,	Lee	Smith,
Christopher	"Shibumi"	Harwood,	Sangeetha	James,	Sami	alaaraji,	Robert	S	Shaffer	Jr,
John	Porter,	Hua,	Roxy	Martinez,	Dennis	Hong,	Fille-Loup,	sodiume,	Matt	Nasi,	Luis
Rosado,	Taylor	Barnett,	Dan	Miller,	Christopher	Soviero,	ArmyTra1n3d,	The	Pebble,
Jacob	Ledel,	Michael	Dax	Iacovone,	Don	Rose,	CL,	Carl	Bulger,	David	Ryan,	Bill
Horvath	II,	Charles	Schrumpf,	David	J.	Kay,	C.	K.	Olson,	Joe	Dietrich,	Maxim	Kuschpel,
Andrew	K.	Thomas,	yelinaung,	Fayerealian,	Carl	H.	Blomqvist,	Bob	Sheff,	Eric,	Thom
Maughan,	Ronald	Reyes,	Kevin	Kapka,	Rami	Taibah,	Rahul	Anantharaman,	Renato
Bonini	Neto,	Peter	Young,	Richard	Drezdon,	Hypermediaz,	Mark	Cater,	Mark	Thomas
Griffin,	Alain	Brisard,	Kevin	Yuan,	Sigmund	Nylund,	Jacob	McClanahan,	Julius	Foitzik,
Brian	Garside,	Gary	Meola,	Jr.,	Raymond	Elward,	Alex	Pekarovsky,	Scott	Tolinski
@stolinski,	Jarle	Eriksen,	Havar	Falck-Andersen,	Akay	Quinn,	British,	Jakov,	Steve
Edholm,	Tom	"Damage"	Minnick,	Nicolas	Leu,	Patrick	D'appollonio	Vega	(@Marlex),
Michael	Conner,	Jonathan	Renpening,	Mario	Brazina,	Simon,	@MayankMisra,	Thia	"T"
Nilawat,	Carolyn	Harp,	Justin	Blaisdell,	Ferris	Chia,	Jeffrey	Joy,	Luke	Baze,	Sun
Environmental,	Carol	Stanek-	Markel,	Sean	Gomer,	Pulsar9,	Peter	D,	Pierre	Gauthier,
Andrew	J	Nicholls,	Kevin	Bosak,	Sean	Johnson,	Adan	Gabriel	Gutierrez,	W.	D.	Powell,
John	Kent,	Keiran	O'Neill,	Beau	Hardy,	Michael	Herman,	Timothy	Kim,	Zach	Hagen,
Cheryl	Howard,	Ivan	Ryabiik,	Skyler	Kanegi,	Josh	Browning,	VoidedGin,	Wonuk	Joshua
Jo,	Rami	AlGhanmi,	Jeffrey	Pannett,	Alex	W.,	Peter	Digby,	Moutemoute38,	Barry	Hay,
Owen	Gibson,	Sohan	S,	Michael	DiBlasi,	Cmdr.	Squirrel,	Mijo	Safradin,	ChiHong	Lin,
Tomatico,	Sergio	Esteban	Galvez	Martell,	Travis	Hawk,	Dex,	Russ	Neff,	Anthony	R.
Junk,	Nicholas	DeFonde,	Joel	A.	Garza,	Kyle	McCleary,	Zach	Toben,	Peter	Ward,
Joaquin	Johnson,	Lai	XueYang,	Ryan	M.	Allen,	Gern	Blanston,	Marc	'Hiro'	Horstmann,	K
Roberts,	Dan	Perrera,	Christopher	Rush,	Shane	Boyce,	Stephen	W.,	Gershom	Gannon-
O'Gara,	Brent	Jones,	Brian	Dickens,	Chris	Corbin,	Matt	Weeks,	Tripp	Cook,	Arman
Chahal,	terryowen,	Daniel	Isaac,	Grant	A.,	George	Dwyer,	Joseph	Corcoran,	Drew
Crabb,	John	Gallagher,	Hari.T,	Avi	Keith	Jansma,	Skyler	Forshage,	Martie	F.,	E	A,	Devin
A	Kluk,	Ken	Brown,	Thanasis	Dimas,	Jake	Prime,	David	Pong,	Jonathan	Kennedy,	Matt
W.,	Alan	Lehman,	Benny	W.	Toho,	Becki	Bradsher,	Jacob	Goldstein,	Jason	Hulin,	Sean
Greenhalgh,	Rebekah	K.,	Vairavan	Laxman,	dwight,	Timothy	Boan,	Liz	Cherene,
Suvasin	Hosiriluk,	Evan	Wiederspan,	Shane	J.	Veness,	DMontgomery,	MK,	C	Pedersen,
Jeremy	Faircloth,	Andrew	Mullen,	Mark	B.,	Michelle	Xue,	choward8,	Ratherjolly
Sponholz,	Eliana	Rabinowitz,	Clarence	Ingram,	amir,	Kai	Nikulainen,	Fishnets88,
Philippe	J.	Giabbanelli,	Joseph	Andersen,	Karol	Werner,	Alex	Lee,	Arturo	Sanz,	Justin
Lewer,	Evan	Vandermast,	Arvindar	Narasimhan,	Alex	Cason,	mindwarp,	Truls	Bjørvik,
Adam	Reed,	Humberto	"SilverOne"	Carvalho,	PE	Reiman,	Adrien	Arculeo,	Marcus
"Makzter"	Olander,	Asif	Ahmed,	Jenny	Lau,	Afif	Whykes,	Wolfgang	Amadeus	Mozart,

Real	Python	Part	1:	Introduction	to	Python

286Acknowledgements

Jessica	Rausch,	Bilawal	Hameed,	Philip	M.	Woite,	Daniel	Milam,	Brian	Luckenbill
Francesco	Rinaudo,	Robert	L.	Townsend,	Joe	Watkins,	Michael	Woo,	Yui-Man	Mak,
Drew	Johnston,	AnotherKlog,	Alik	S,	James	Ingham,	Tony	Clough,	Slaughtz,	Chelsea	-
QU-	BD,	Tj	c,	Efrat	Pauker,	Snappy	the	Snapster,	GhostReven,	Dan	Jenkins,	Kallahir,
Nathan	Greco,	Bilal	Ahmed,	Napoleon	Wennerstrom,	Brad	Sparks,	John	Barrett,
maxCohen,	Yvonne	Law,	Scott	Forney,	Matthew	R.	House,	Robert	M.	Froese,	Bryan	Ng,
Phill	Portlock,	Matthew	Erwin,	Gorle,	Radhakrishna,	Mike	Richardson,	Abundance	media
Group,	SF,	CA,	TheFatOne,	Michal	Sedlak,	Mike	Patterson,	Louis	Helscher,	Josh
Philips,	Phossil,	Charlie	Tan,	Maxim	Kharlamov,	Jordan	Vittitow,	Marcel	Barros	Aparici,
Piotr	Boczo?,	Matthew	Cheok,	Frank	Claycomb,	Stig	Harald	Gustavsen,	Noel	Santiago,
Jason	Campisi,	Debora	Richards,	Ninjabot,	Nickolas	Carter,	Oregon	Manuel	Succo,
MrMookie,	Joshua	Benton,	M	Cochran,	Brian	Ricard,	Tabi,	Cody	Oss,	Bren	Rowe,
Jonathan	Tomek,	Jonathan	Wambach,	Erih	G.,	Maria	K,	matt,	Karl	"hair10"	Markovich,
Jace	Ferguson,	Gretchen	Imbergamo,	Alexander	Tushinsky,	Michael	&	Brandi,	Mark
Klamik,	Erik	R	Velez,	Michael	Pellman,	Sheldon	Sawchuk,	dragon4ever,	Matthew
Fisher,	Scott	Clausen,	David	Hunter,	Kevin	McKenzie,	Hector	Saldana,	Andrew
Saunders,	Athanasios	Kountouras,	Christopher	Kay-Chalk,	Rusty	Stiles,	M.	C.	Rosen,
Kai	Zhao,	Michelle	Poirier,	Andrew	K.,	Anna	Rozenbaum,	Nader	Khalil,	Ismail
Morgenegg,	Chris	Roark,	Dean	Van	Beelen,	Ron	Vickers,	Nick	Tome,	Eric	Nikolaisen,
SLA,	Kick	Molenveld,	VIC,	Nicholas	Smith,	Hugh	Jass,	Eric	Rodriguez,	Hannes
Honkasaari,	Anthony	Barranco,	Espen	Nilssen,	Chris	Stratford,	Callum	Griffiths,	Kjetil
Svendsen,	Brad	Rosenboom,	Christophe	MOUCHEL,	Jacob	Shmerkovich,	GaryWith1R,
Craig	O	Connor	@Craigieoc,	Justin	Haydt,	William	Woodward	Sharp,	Glowhollow,
Michael	Lass,	Lachlan	Collins,	Little	Rory,	Eng.	Ahmed	A.	Alshaia,	Dave	Ruppel,	JC,
Aguirrex,	Max	Lupo,	Greg	Horvath,	Daniel	Gourry	Bustos,	Gregor	Wegberg,	Dillon
Development	Corporation,	Kyle	Owen,	Mark	Wert,	Stephen	Holt,	Tiffanie	Chia,	Naim
Busek,	Anthony	Z.,	Jacob	Evan	Horne,	James	H	Lin,	Rob	Scott,	Sam	Libby,	Joseph
Cicero,	Martin	Schmidinger,	Logan	Gittelson,	P4XEL,	Eric	Blohm,	sipp11,	Supporter
from	Concord,	MA,	Hadora,	Tyler	Shipe,	Spencer	Cree,	Steve	Sartain	Sartain,	Peter
Gerrit	Lowe,	Ron	L.,	Nadine	Campbell,	Aiman	Ahmed,	Jeffrey	J.F.	Rebultan,	Michael
Brown,	burnabytom,	Jigga	Jay	Ricciardi,	Michal	Muhlpachr,	Aaron	Fader,	Daniel	Scott,
Crashman2600,	Ian	R	Wright,	Mirza	Joldic,	Robert	Blackwell	(rblackwe),	David	"Crutch"
Crutchfield,	Grant	"Beast"	Harper,	Spence	Konde,	Michael	Wan,	Eric	Kilroy,	ron	ursem,
Rebecca	H	Goldman,	Samuel	E.	Giddins,	Jeanclyde	Cruz,	Vince	P,	Johnny	J.,
Alexander	Zawadzki,	William	Clements	/	Chicago	Technology	Group,	Allen	Porras,
Udrea	M,	Joled	Koh	&	Laywen,	Renno	Reinurm,	Alex	Wixted,	Levi	Blue	Maggard,	Ken
Mcewan,	Austin	Butcher,	Benjamin	Durie,	Jimmy	Hsieh,	Dwinf,	Sir	Adelaide,	Blake
Laroux,	Lucas	Gronlund,	Simon	Jubinville,	Aerie	Ward,	Thim	Frederik	Strothmann,

Real	Python	Part	1:	Introduction	to	Python

287Acknowledgements

Chasester,	Laughing	Magi,	Wagner,	Earl,	brianwik,	Owen	Ness,	Flavio	Massayoshi
Oota,	bfishadow,	Bill	E,	Frank	Wiebenga,	Nick	Keehn,	Alex	Tirrell,	Tom	Higgins,	LP,
Tyler	Cushing,	Irina	Pinjaeva,	Tim	Roark,	JP,	Boris	Gutbrod,	Adam,	Benjamin
Miramontes,	Sr.,	Anatoly	Myaskovsky,	Joseph	Welt,	domhaase,	Jonathan	H.	Chaney,
Carlos	Piñan,	Matt	Varian,	Michael	Ruppe,	Bernie	Sobieraj,	Kevin	Bacon	the	Third,
Yusuke	Kaji,	Lee	"TieGuy"	Bratina,	Joel	Galeran	(Twitter	@ChibiJoel),	az,	E.	Scott,	Will
Phule,	Jonathan	Hill,	Daniel	Waugh,	Alberto	Rodriguez	Barbon,	Omar	Zahr,	Juuhhhstin,
Gav	Reid,	Conny	Johansson,	LV,	Monique	L.	Sakalidis,	Martin	Glassborow,	Dan
Gadigian,	Vincent.gagnon5@gmail.com,	Ed	O'Brien,	Jimmy	Bhullar,	James	McNamara,
Hamad	B.	Al-Gharabally,	Michael	Yu,	John	Saunders,	Mark	Kent	Malmros,	Anton	Harris,
I	Ketut	Parikesit,	Kevin	O'Donnell,	Sait	Mesutcan	Ilhaner,	Conor	D.	Cox,	Lucas	Eaton,
Mike	Rotch,	Jess	Zhu,	Anne	Marie	Uy,	G	Malone,	Nathan	Hurd,	John	L.	Grant,	III,	Eric
Joel,	Adil	Shakour,	Scott	Wiley,	Sam	Hunter,	Laura	R.	Alonso,	Doug	K.,	NardoXing,	Ben
Blair,	Andrew	James,	Joe	Sparacino,	Shawn	Albert,	Puipui	Ng,	Shane	Alexander	Mott,
Seth	Williams,	Kristian	Hill,	Drew	S,	Sandra	Hor,	Gpurd,	Robin	Orlic,	Armel	C.,	Justin
Duino,	Christophe	R.	(Darwiin),	etchasketcher,	_r00k,	Tomas	Hernandez	(Ttoti),	Elena
Murphy,	Ryan	Riley	Aiden	Fisher,	Luke	Thomas,	Riel	Chu,	nameasitappearsonlist,	Philip
Freidin,	tf,	Nathan	Emery,	Andrew,	Jesse	Ventura,	Dan	Kohlbeck,	Oz	du	Soleil,	Data
Mercenary,	Phil	Watts,	John	Pinto,	Yuval	Langer,	Simon	Evans,	Steve	Turczyn,
GetAdditive.com,	Nick	Snowden,	Kris,	Michael	Litman	(@mlitman),	Peter	Ung,	Fargo
Jillson,	Patrick	Yevsukov,	Dee	Bender,	Batbean,	Aris	MIchalopoulos,	Threemoons,
Christopher	Yap,	Tim	Williams,	O.	Johnson,	David	N	Buggs,	Myles	Kelvin,	M.	Leiper,
Brogan	Zumwalt,	Roy	Nielsen,	Jaen	Kaiser,	Joe	C.,	Emily	Chen,	Bryan	Powell,
SayRoar.com	(Film	&	TV),	Alan	Hatakeyama,	Chris	Pacheco,	Alex	Galick,	p	a	d	z	e	r	o,
Juri	Palokas,	Gregg	Lamb,	Lani	Tamanaha	Broadbent,	Ami	noMiko,	Aaron	Harvey,
Angel	Sicairos,	Shiloh	N.,	Katherine	Allaway,	AlamoCityPhoto.Com,	John	Laudun,	Greg
Reyes,	Jagmas,	Dan	Allen	(QLD,	Australia),	Dustin	Niehoff,	Ag,	Scott	M.,	Esben
Mølgaard,	Ian	McShane,	Timothy	Gibson,	Que,	Janice	Whitson,	Babur	Habib,	Brent
Cappello,	Meep	Meep,	Justin	G.,	Stuart	Woods,	Ryan	Cook,	Mike	R.,	John
Surdakowski,	Ehren	Cheung,	powerful	hallucinogens,	Robert	Drake,	Steve	Rose,
Trenshin,	Meeghan	Appleman,	Hanning	"Butch"	Cordes!,	Jose	de	Jesus	Medina	Rios,
Guadalupe	Ramirez,	Andrew	Willerding,	NathAn	Talbot	(MB),	Jorge	Esteban,	bchan84,
irfans@gmail.com,	Krish,	Vaughn	Valencia,	Jeromy	hogg,	Jorge	Hidalgo	G.,
zombieturtle,	Mors,	Rick	D,	Rob	Schutt,	Wee	Lin,	incenseroute.com,	IceTiger,	James	E.
Baird	Hulusi	Onur	Kuzucu,	TheHodge,	Yannick	Scheiwiller,	Robin	arvidsson,	Oliver
Diestel,	Daniel	Knell,	Elise	Lepple,	Frank	Elias,	Shaun	Budding,	Shane	Williams,	Chin
Kun	Ning,	Eike	Steinig,	Hogg	Koh,	AaronMFJ,	John	P.	Doran,	M	Blaskie,	Eric	'Harry'
Brisson,	Chris	"Krispy89"	Guerin,	Duck	Dodgers,	Jonathan	Coon,	Sally	Jo	Cunningham,

Real	Python	Part	1:	Introduction	to	Python

288Acknowledgements

Joe	Desiderio,	Anon,	Mike	Sison,	Shane	Higgins,	Russell	Wee,	Gabriel	B.,	Thomas
Sebastian	Jensen,	Amy	Pearse,	James	Finley,	Mikhail	Ushanov,	James	AE	Wilson,
Michael	Dussert,	Felix	Varjord	Soderstrom,	Eric	Metelka,	Stephen	Harland,	muuusiiik,
Shandra	Iannucci,	Joe	Racey,	Cook66,	Nicholas	R.	Aufdemorte,	Justin	Marsten,	Barrett,
Zachary	Smith,	mctouch,	Donald	D.	Parker,	Rob	Silva,	Phillip	Vanderpool,	David
Herrera,	Otto,	Roland	Santos,	Peter	the	Magnificent,	Brandon	B.,	Brett	Russell,	Joe
Carter,	Andrew	Paulus,	Peter	Harris,	Brian	Kaisner,	Stefan	Gobel,	Melissa	Beher,	Jesse
B	-	PotatoHandle,	pwendelboe,	Matthias	Gindele,	Andy	Smith-Thomas,	Elizabeth	S.,
Erez	Simon,	Andrew	Cook,	Wouter	van	der	Aa,	Iain	Cadman,	Kyle	Bishop,	Andrew
Rosen,	Alessandro	"juju"	Faraoni,	GeekDoc,	Arran	Stirton,	AMCD,	Eddie	Nguyen,	Steve
Stout,	Richard	Bolla,	John	Hendrix	III,	Pallav	Laskar,	Scrivener,	Bobbinfickle,	Vijay
Shankar	V,	Zach	Peskin,	Mark	Neeley,	oswinsim,	Joe	Briguglio,	Stacy	E.	Braxton,	Alan
L	Chan,	Markus	Fromherz,	Jim	Otto,	Neil	Ewington,	Sarah	New,	Harish	Gowda,	Eva
Vanamee,	Peter	Knepley,	RVPARKREVIEWS.COM,	Brad	Wheel,	Eric	Gutierrez,	Jeff
Wilden,	Dave	Coleman,	Brian	S	Beckham,	Bill	Long,	Jeremy	Kirsch,	Tim	Erwich,	Ryan
Valle,	John	Palmer,	Rick	Skubic,	Vincent	Parker,	David	Von	Derau,	Jonathan	Wang,
Chris	Stolte,	Thomas	Boettge,	Jochen	Schmiedbauer,	Dirk	Wiggins,	David	Recor,
Joshua	Hepburn,	Pelayo	Rey,	Jabben	Stick,	Amit	paz,	Rob	B.,	Art?rs	Nar?ickis,	Merrick
Royball,	Jerome	amos,	Soba,	Varian	Hebert,	Geoff	A.,	Dave	Strange,	Roy	Arvenas,
Ryan	S.,	Suresh	Kumar,	Stefan	Nygren,	John	H,	Justin	A.	Aronson,	Dave	C,	Keegan
Willoughby,	Martin-Patrick	Molloy,	David	Hay,	Jeff	Beck,	Sean	Callaghan,	Greg
Tuballes,	Mark	Filley,	Somashekar	Reddy,	Jorge	Palacio,	Glen	Andre	Than,	Garrett	N.,
Garry	Bowlin,	Sathish	K,	Lucas	A.	Defelipe,	Michael	Roberts,	Norman	Sue,	Tommaso
Antonini,	Herbert,	Frank	Ahrens,	Uberevan,	Andy	Schofield,	Amir	Prizant,	Bennett	A.
Blot,	Rob	Udovich,	Holli	Broadfoot,	Ray	Lee	Ramirez,	Jeffrey	Danziger,	Kevin	Rhodes,
Brendon	Van	Heyzen,	Jeff	Simon,	Jamie	E.	Browne,	Vote	Obama	2012	!,	Wel,
n33tfr33k,	J.	Phillip	Stewart,	dham,	Ove	Kristensen,	Phillip	Lin,	Steve	Paulo,	Jerry	Fu,
Chris	Wray,	Daniel	Schwan,	Sean	Cantellay,	Azmi	Abu	Noor,	Lucas	Van	Deun,	The
Mutilator,	Isaac	Amaya,	chandradeep,	B.	Graves,	Benji,	Leonard	Chan,	James	Smeltzer,
George	Ioakimedes,	Andrew	Keh,	Bobby	T.	Varghese,	Sir	Nathan	Reed	Chiurco,
Christian	Nissler,	Ethan	Johns,	David	Strakovsky,	Leslie	Harbaugh,	AdamGross,	Darren
Koh,	Matt	Palmer,	Michael	Anthony	Sena,	Blade	Olson,	Larry	Sequino,	jeremy	levitan,
Rahul	Shah,	Mike	Schulze,	Smallbee,	Mark	Johanson,	MS,	Pat	Ferate,	Dennis	Chan,
Matthew	D	Johnson,	Jefferson	Tan,	Eric	G,	Jordan	Tucker,	Steffen	Reinhart,	Benjamin
Rea,	Brendan	Burke,	Oppa	Gangam	Style,	P	B	Dietsche,	Daniel	Lauer,	Jon	D,	JFV,
Jeremy	Grise,	James	Tang,	Jean-Philippe	Roy,	The	Guru	Guys,	Matthew	Chan,	Anna
Parikka,	moh	maya,	Armand,	Robert	Porter,	Jeff	Hanlon,	Megan	Olea	&	Chad	Tungate,
Marko	Soikkeli,	Jamie	Finlay,	Jack	Collison,	Ollie	Silviotti,	Andrew	Hayden,	Jay	D

Real	Python	Part	1:	Introduction	to	Python

289Acknowledgements

Wilson,	Pureum	Kim,	Mike	Mudgett,	Jerry	Horn,	Luca	Rossetto,	gulaschsuppe,	Martin
Langbraten,	filupmybowl,	J.	Lawler,	Ron	Averyt,	Christopher	H.	Y.	Chiu,	John	Lee,
Justin	Nguyen,	Antoine	BERTIER,	fuultier@gmail.com,	Adrienne	C,	Larry	Tierney,	Maris
Gabalins,	Marco	Bulgarini,	Simon	Vahr,	Sebastian	Hojas,	S	Liew,	Helena	Montauban,
Xiaoying	Zhang,	Alan	H,	HicEtNunc,	Jonathan	B.	Johnson,	Siam,	Thomas	Richter,
Marc-Andre	Parent,	Kristian	Nybo,	Jim	and	Sam	Maloney,	ian	remulla,
emmanuelordonez12@yahoo.com,	Ulf	Eliasson,	James	Murphy,	Adrian,	Rodrigo
Konrad,	Simon	(pigeon	head)	Jack,	Richard	Huber,	Andrew	Hinett,	Robert	C.,	Catherine,
Felipe	Ferreira	de	Oliveira,	Mike	P,	Nate	Fowler,	Simon	Khaimov,	Kurt	Liebegott,
segnorblues,	Kevin	Glaser,	Bill	Fischofer,	Graham	Peacock	Heath,	Jared	Pennell,	Blaine
Hilton,	Maurizio,	Italy,	Juha	Jaaskelainen,	Sarah	Leadbeater,	Brian	J	Lester,	somair,
Jakub	Stano,	John	Buzzi,	The	Fish,	Greg	A.,	Nichole	Austin,	Erik	Wilthil,	Nathaniel
Griggs,	M.Bair,	Marwan	Alzarouni,	Simon	Belkin,	Thebeersnobs.com,	Gary	Harmon,
Johan	Oberg,	Stephen	Brown,	Matthew	Dwyer,	Julian	Naydichev,	Greg	Ortega,	Will
Manidis,	Jogender	Nagar,	Brian	Paul,	Keith	Sanders,	Chris	Ferreira,	Chad	Whittaker,
Sonic,	Phinehas	Bynum,	Jeremy	Jones,	Mark	Lindsey,	Koty	Yell,	Benjamin	Fernandez,
Christopher	"Berryman"	Berry,	Aaron	Gersztoff,	Kel	Stewart,	Brian	Taylor,	John
Hutchins,	Michael	S.	Watson,	Robert,	Dave	Sergeant,	Ted	Reardon,	Darcy	Kohls
6apcyk,	David	Rosen,	Jacob	Minne,	Rich,	Ron	Swanson,	Badboychoi,	Shane	Bailey,
Xiaoyang,	M.	Wuerz,	Marty	Otto,	Leonardo	M.	M.	Jorge,	arkuana,	mary	grace	lim,
Bellefonte,	K.	Mathis,	Joel	Fishbein,	Neal	Mullin,	Stephan	H.	Wissel,	Alex	Jeuck,	Bri
Bear,	Dave	LeCompte,	Alessandro	B.,	Boding	Zhang,	Timothy	Jack,	Daniel	Simaan,
Troy	"Wrongtown"	Hall,	Veli	Kerim	Çelik,	Bhaskar	Krishna,	Pawel	Wlodarski,	Curtis
Richardson,	Anders	Lindvall,	Branden	Laurie,	Angus	Haynes,	Nathan	Bain,	Jacques
Schaefer,	Spongefile,	John	Reeser,	William	Limratana,	Sascha	Kiefer,	Sikander	Lhote,
Stefan	Larsson,	Bobby	Rester,	David	L	Hill,	Daniel	To,	Austin	HIll,	Bruce	Turner,	Darryl
D'Aoust,	James	Salazar,	Gregory	D.Tsikis,	John	Goerl,	Megat	Denney,	Jon	T.	Nilsson,
Lam	Kee	Wei,	Chia	Yeak,Wong,	Ondrea	Graye,	David	M.	Graf,	Mark	Rogerson,	Troels
Bager,	Don	Healey,	Brandon	Cushenberry,	Daniel	Jeffery,	john	liu,	Iddeen	Khairul,
YanTing,	deadly22sniper,	ARNLAO,	Jonah	Eaton,	Mark	Ferguson,	J	Wagstaff,	Tina
Preston,	Kevin	J.	Lee,	Anthony	Perrett,	Rich	Watts,	Robert	Reagh,	Sukanta	Ganguly,	D.
Nielsen,	Maryam	L.,	Jeremy	Self,	Marcus	Pearl,	Andrew	R	Wasem,	Philipp	C.	Opitz,
Joshua	Michael	Nicholas	"Lefty"	Turner,	Emmanuel	Beltran,	Bryan	Thurnau,	DBone,
Daniel	"Heru-ur"	Lagerman,	Oliver	Marshall,	Matthew	Deloughry,	Jothi,	Joe	Staton,
Steve	Seward,	Hotau,	Joshua	Christain,	Bryan	Parry,	Doug	Philips,	Brian	Chia,	Mauricio
@Reyes,	Erik	Schwartz,	George	Cammack,	Nico	S.,	J.	Gizard,	Jeff	Kujath,	Dave,	Brian
Huqueriza,	Guðmundur	Borgar	Gislason,	Dave	Poirier,	Ferran	Selles,	Michael	"Maka"
Gradin,	Jack	Dinze,	Klas	Gelinder,	Kyle	Ingrelli,	peter,	Christine	C.	Heisler,	Kyle	Brown,

Real	Python	Part	1:	Introduction	to	Python

290Acknowledgements

Yannik	Schreckenberger,	Shiki	Cheefei	Lee,	Sean	Hames,	David	Tran,	James	Roberts,
Joshua	Bowden	(aka	Jaxrtech),	Amiya	Gupta,	Bryan	A,	Brion	Cook,	C	Gunadi,	Scott
Morrison,	Hagbard	Celine,	Thomas	Vassøy,	Cliffton	Hillmann,	Chance	Evans,	David	W
Luna,	Adi	Kamdar,	Peter	M.	Kersulis,	Joseph	Perera,	Rifqi,	Adam	Schuster,	Nadine
Ong,	AkNetworking,	Aaron	Zukoff,	Frank	Tilley,	Dustin	Hall,	John	M.	Kuzma,	Felix
Kaefer,	BarbMacK,	Rohan	Martin,	Francis	James	Basco,	W.	Montes,	Howard	M.
Lawson	II,	Michael	Milliken,	Klaus	Thiel	(Munich-GER),	Richard	Dusold,	John	T	McGee
II,	William	Nichols,	Gerad	Troje,	Keith	Rebello,	bytemap,	Jason	S.,	Haynes	Chewning,
Otinane	Epidio,	Aftah	Ismail,	John	K.	Estell,	David	Byworth,	FIGGE,	Jason	Gassel,	Greg
Matyola,	Eric	L.	Wold,	Glenn	Fetty,	Kevin	McGill,	Nathan	J.	Sheusi,	M	A	Shevloff,	Katie
Camille	Friedman,	Greg	Thompson,	Galina	Zubkov,	Adam	D,	Scott	Paterson,	Hutch-
CaneVentures.com,	Thomas	Thrash,	Benoit	Lachance,	Pablo	Rivas,	Skip	Surette,
Mathew	Buttery,	FRiC,	Celeste	H.	Galvez,	Christopher	Bonner

Real	Python	Part	1:	Introduction	to	Python

291Acknowledgements

	Introduction
	Getting Started
	Download Python
	Open IDLE
	Write a Python Script
	Screw Things Up
	Store a Variable

	Interlude: Leave yourself helpful notes
	Fundamentals: Strings and Methods
	Mess Around with Your Words
	Use Objects and Methods
	Assignment: pick apart your user's input

	Fundamentals: Working with Strings
	Streamline Your Print Statements
	Find a String in a String
	Assignment: Turn your user into a l33t h4x0r

	Fundamentals: Functions and Loops
	Assignment: Perform calculations on user input
	Create Your Own Functions
	Functions Summary
	Assignment: Convert temperatures
	Run in circles
	Assignment: Track your investments

	Interlude: Debug your code
	Fundamentals: Conditional Logic
	Compare Values
	Add Some Logic
	Control the Flow of Your Program
	Assignment: Find the factors of a number
	Break Out of the Pattern
	Recover from errors
	Simulate Events and Calculate Probabilities
	Assignment: Simulate an election
	Assignment: Simulate a coin toss experiment

	Fundamentals: Lists and Dictionaries
	Assignment: List of lists
	Assignment: Wax poetic
	Make Permanent Lists
	Store Relationships in Dictionaries
	Assignment: Capital city loop
	Assignment: Cats with hats
	Assignment: Reviewing the fundamentals
	Assignment: Summary

	File Input and Output
	Use More Complicated Folder Structures
	Assignment: Use pattern matching to delete files
	Read and Write CSV Data
	Assignment: Create a high scores list from CSV data
	Assignment: Split a CSV file

	Interlude: Install Packages
	Installing via pip
	Installing from Source

	Interact with PDF files
	Manipulate PDF Files
	Assignment: Add a cover sheet to a PDF file
	Create PDF Files

	SQL Database Connections
	Use Other SQL Variants

	Interacting with the Web
	Scrape and Parse Text From Websites
	Use an HTML Parser to Scrape Websites
	Interact with HTML Forms
	Interact with Websites in Real-time

	Scientific Computing and Graphing
	Use NumPy for Matrix Manipulation
	Use matplotlib for Plotting Graphs

	Graphical User Interface
	Add GUI elements with EasyGUI
	Assignment: Use GUI elements to help a user modify files
	Create GUI Application with Tkinter

	Final Thoughts
	Appendix A: Installing Python
	Check Current Version
	Install Python
	Verify Install

	Appendix B: Regular Expressions
	Basic Syntax
	When Should You Use Regular Expressions?
	Functions
	More Practice
	Assignment: Data cleaning with regular expressions
	Assignment: Reviewing regular expressions

	Appendix C: Primer on Object-Oriented Programming
	Classes
	Instances
	Define a Class
	Instantiating
	Instance Methods
	Inheritance
	Assignment: Comprehension check
	Assignment: Model a farm
	Assignment: Github with class
	Conclusion

	Acknowledgements

