9 - Programming with FLUID

This chapter shows how to use the Fast Light Usierfliace Designer ("FLUID") to create your GUIs.

What isFLUID?

The Fast Light User Interface Designer, or FLUKDaigraphical editor that is used to produce FLOlree
code. FLUID edits and saves its statefin files. These files are text, and you can (withe¢@&dit them in a
text editor, perhaps to get some special effects.

FLUID can "compile" thef! file into a. cxx and a h file. The. cxx file defines all the objects from thel
file and the h file declares all the global ones. FLUID also s localization lhternationalizatiohof
label strings using message files and the GNU xettePOSIX catgets interfaces.

A simple program can be made by putting all yowdec@ncluding aai n() function) into the f1 file and
thus making thecxx file a single source file to compile. Most progsaare more complex than this, so you
write other. cxx files that call the FLUID functions. Thesexx files must#i ncl ude the. h file or they can

#i ncl ude the. cxx file so it still appears to be a single source.fil

#include

¥

Figure 9-1: FLUID organization.

Normally the FLUID file defines one or more fungt®or classes which output C++ code. Each function
defines a one or more FLTK windows, and all thegeid that go inside those windows.

Widgets created by FLUID are either "named", "coemptamed" or "unnamed". A named widget has a legal
C++ variable identifier as its name (i.e. only aphmeric and underscore). In this case FLUID defme
global variable or class member that will pointre widget after the function defining it is calleédcomplex
named object has punctuation such as ".' or -a&hgiother symbols in its name. In this case FLE#Bigns a
pointer to the widget to the name, but does nenhgtt to declare it. This can be used to get thgeiglinto
structures. An unnamed widget has a blank nameanubinter is stored.

Widgets may either call a named callback functlmat yyou write in another source file, or you capmy a
small piece of C++ source and FLUID will write avatte callback function into thecxx file.

1 of 2¢

Running FLUID Under UNIX

To run FLUID under UNIX, type:

fluid filenane.fl &

to editthe 1 file fil enane. f1. If the file does not exist you will get an erpwp-up, but if you dismiss it
you will be editing a blank file of that name. Yoan run FLUID without any name, in which case yall w
be editing an unnamed blank setup (but you carsage-as to write it to a file).

You can provide any of the standard FLTK switchefote the filename:

-di splay host:n.n
-geonetry WKH+X+Y
-title windowitle
-name cl assnane
-iconic

-fg color

-bg col or

-bg2 col or

-schene schenenane

Changing the colors may be useful to see what yaerface will look at if the user calls it withélsame
switches. Similarly, using "-scheme plastic" whiosv how the interface will look using the "plastatheme.

In the current version, if you don't put FLUID irttee background with '&' then you will be able twoat
FLUID by typingCTRL- C on the terminal. It will exit immediately, losirany changes.

Running FLUID Under Microsoft Windows

To run FLUID under WIN32, double-click on tiR&.UID.exefile. You can also run FLUID from the
Command Prompt window. FLUID always runs in thekggound under WIN32.

Compiling . f1 files
FLUID can also be called as a command-line "compitecreate thecxx and. h file from a. f1 file. To do

this type:

fluid -¢ fil enane.fl

This will read the i | enane. 1 file and writefilename.cxx andfilename.h. Any leading directory on
filename. f1 will be stripped, so they are always written te turrent directory. If there are any errors
reading or writing the files, FLUID will print therror and exit with a non-zero code. You can use th
following lines in a makefile to automate the cieatof the source and header files:

my_panel s. h ny_panel s. cxx: ny_panel s. f
fluid -c ny_panel s. fl

Most versions of make support rules that causefiles to be compiled:

.SUFFI XES: .fl .cxx .h
fl.h Jfl.exx:
fluid -c $<

2 of 2¢

A Short Tutorial

FLUID is an amazingly powerful little program. Howes, this power comes at a price as it is not abwvay
obvious how to accomplish seemingly simple taskb wi This tutorial will show you how to generate
complete user interface class with FLUID that isdufor the CubeView program provided with FLTK.

Zoom [10.0 | 1}

[

N |

Figure 9-2: CubeView demo.

The window is of class CubeViewUIl, and is completgnerated by FLUID, including class member
functions. The central display of the cube is aas&te subclass of FI_GI_Window called CubeView.
CubeViewUI manages CubeView using callbacks froerious sliders and rollers to manipulate the
viewing angle and zoom of CubeView.

At the completion of this tutorial you will (hopédly) understand how to:

1. Use FLUID to create a complete user interface clastuding constructor and any member functions
necessary.

2. Use FLUID to set callbacks member functions of st@mn widget classes.

3. Subclass aAl _Gd _W ndow to suit your purposes.

The CubeView Class

The CubeView class is a subclass of FI_Gl_Winddwas methods for setting the zoom, xtendy pan,
and the rotation angle about thandyaxes.

You can safely skip this section as long as yolize#he CubeView is a sublassrf G _W ndow and will
respond to calls from CubeViewUI, generated by HDUI

3 of 2¢

The CubeView Class Definition

Here is the CubeView class definition, as giverntbyeader file "test/CubeView.h":

class CubeView : public FI _G _Wndow {
publi c:
CubeView(int x,int y,int wint h,const char *|=0);
/'l this value determ nes the scaling factor used to draw the cube
doubl e si ze
/* Set the rotation about the vertical (y) axis.
*

* This function is called by the horizontal roller in CubeVi ewl
* and the initialize button in CubeVi ewU
*/
void v_angl e(fl oat angl e){vAng=angl e; };
/!l Return the rotation about the vertical (y) axis.
float v_angle(){return vAng;};
/* Set the rotation about the horizontal (x) axis.
*

* This function is called by the vertical roller in CubeViewl
and the
* initialize button in CubeVi ewll
*/
void h_angl e(fl oat angl e){hAng=angl e; };
/1 the rotation about the horizontal (x) axis.
float h_angle(){return hAng;};
/* Sets the x shift of the cube view canera.
*
* This function is called by the slider in CubeViewld and the
* initialize button in CubeVi ewll
*/
voi d panx(float x){xshift=x;};
/* Sets the y shift of the cube view canera.
*
* This function is called by the slider in CubeViewd and the
* initialize button in CubeVi ewll
*/
voi d pany(float y){yshift=y;};
/* The widget class draw() overri de.
* The drawm() function initialize d for another round of
* drawi ng then calls specialized functions for draw ng each
* of the entities displayed in the cube view.
*/
void draw();

private:
/* Draw t he cube boundaries
* Draw the faces of the cube using the boxv[] vertices, using
* GL_LINE _LOOP for the faces. The color is #defined by
* CUBECOLOR
*/
voi d drawCube();

fl oat vAng, hAng; float xshift,yshift;

float boxv2[3];float boxv3[3];

fl oat boxvO[3];float boxvl[3]
3 float boxv6[3];float boxv7[3];

fl oat boxv4[3];float boxv5[3]

}s

The CubeView Class | mplementation

Here is the CubeView implementation. It is veryigamto the "cube” demo included with FLTK.

#i ncl ude " CubeVi ew. h"
#i ncl ude <mat h. h>

4 of 2¢

CubeVi ew. : CubeView(int x,int y,int wint h,const char *I)
: Fl_d _Wndow(x,y,w h,l)

{
vAng = 0.0; hAng=0.0; size=10.0;
/* The cube definition. These are the vertices of a unit cube
* centered on the origin.*/
boxvO[0] = -0.5; boxvO[1] = -0.5; boxv0O[2] = -0.5; boxvl[0] = 0.5;
boxvl[1] = -0.5; boxvl[2] = -0.5; boxv2[0] = 0.5; boxv2[1l] = 0.5;
boxv2[2] = -0.5; boxv3[0] = -0.5; boxv3[1l] = 0.5; boxv3[2] = -0.5;
boxv4[0] = -0.5; boxv4[1l] = -0.5; boxv4[2] = 0.5; boxv5[0] = 0.5;
boxv5[1] = -0.5; boxv5[2] = 0.5; boxv6[0] = 0.5; boxv6[1l] = 0.5;
boxv6[2] = 0.5; boxv7[0] = -0.5; boxv7[1] = 0.5; boxv7[2] = 0.5;
b

/1 The color used for the edges of the boundi ng cube.
#defi ne CUBECOLOR 255, 255, 255, 255

voi d CubeVi ew, : drawCube() {
/* Draw a col ored cube */
#define ALPHA 0.5

gl ShadeModel (GL_FLAT);

gl Begi n(G._QUADS) ;
gl Color4f (0.0, 0.0, 1.0, ALPHA);
gl Vert ex3f v(boxvO0);
gl Vert ex3f v(boxvl);
gl Vert ex3f v(boxv2);
gl Vert ex3fv(boxv3);

gl Color4f (1.0, 1.0, 0.0, ALPHA);
gl Vert ex3fv(boxv0);
gl Vert ex3fv(boxv4);
gl Vert ex3f v(boxv5h);
gl Vert ex3f v(boxvl);

gl Color4f (0.0, 1.0, 1.0, ALPHA);
gl Vert ex3f v(boxv2);
gl Vert ex3f v(boxve6);
gl Vert ex3fv(boxv7);
gl Vert ex3fv(boxv3);

gl Col or4f (1.0, 0.0, 0.0, ALPHA);
gl Vert ex3fv(boxv4);
gl Vert ex3fv(boxvb);
gl Vert ex3f v(boxve6);
gl Vert ex3f v(boxv7);

gl Color4f (1.0, 0.0, 1.0, ALPHA);
gl Vert ex3f v(boxvO0);
gl Vert ex3f v(boxv3);
gl Vert ex3fv(boxv7);
gl Vert ex3fv(boxv4);

gl Col or4f (0.0, 1.0, 0.0, ALPHA);
gl Vert ex3fv(boxvl);
gl Vert ex3f v(boxv5h);
gl Vert ex3f v(boxve6);
gl Vert ex3f v(boxv2);
gl End() ;

gl Color3f(1.0, 1.0, 1.0);
gl Begi n(G._LI NES) ;

gl Vert ex3fv(boxv0);

gl Vert ex3fv(boxvl);

gl Vert ex3fv(boxvl);
gl Vert ex3fv(boxv2);

gl Vert ex3fv(boxv2);

5 of 2¢

gl Vertex3fv(boxv3);

gl Vertex3fv(boxv3);
gl Ver t ex3f v(boxv0);

gl Vert ex3f v(boxv4);
gl Ver t ex3f v(boxvb);

gl Vert ex3f v(boxvb);
gl Ver t ex3f v(boxv6);

gl Vert ex3f v(boxv6);
gl Vert ex3fv(boxv7);

gl Vertex3fv(boxv7);
gl Vertex3fv(boxv4);

gl Vert ex3fv(boxvO0);
gl Vertex3fv(boxv4);

gl Vertex3fv(boxvl);
gl Ver t ex3f v(boxvb);

gl Vert ex3fv(boxv2);
gl Vert ex3f v(boxv6);

gl Vert ex3f v(boxv3);
gl Vert ex3f v(boxv7);
gl End() ;
}; /1 drawCube

voi d CubeVi ew, :draw) {
if (tvalid()) {
gl Loadl dentity(); gl Viewport(0,0,w),h());
gl Ortho(-10, 10, - 10, 10, - 20000, 10000) ; gl Enabl e(G._BLEND) ;
gl Bl endFunc(GL_SRC ALPHA, GL_ONE_M NUS_SRC ALPHA) ;
}

gl O ear (G._COLOR BUFFER BI T | GL_DEPTH BUFFER_BI T);
gl Pushiatri x(); gl Transl atef (xshift, yshift, 0);
gl Rot at ef (hAng, 0,1, 0); gl Rotatef(vAng, 1,0,0);
gl Scal ef (fl oat (si ze), fl oat (size),float(size)); drawCube();
gl PopMatri x();
b

The CubeViewUI Class

We will completely construct a window to displaydacontrol the CubeView defined in the previous isect
using FLUID.

Defining the CubeViewUI Class

Once you have started FLUID, the first step inmiefy a class is to create a new class within FLU$g
theNew->Code->Class menu item. Name the class "CubeViewUI" and le&eesubclass blank. We do not
need any inheritance for this window. You should $& new class declaration in the FLUID browser
window.

6 of 2¢

=w fluid
File Edit MNew Help

—tlass Userinterface

¥ 4 class ||E

puklic

Mame:
|CubeViewUI|

Subclass of (fext hetyeen : and {

] A Cancel

Figure 9-3: FLUID file for CubeView.

Adding the Class Constructor

Click on the CubeViewUI class in the FLUID windowdaadd a new method by selecting
New->Code->Function/M ethod. The name of the function will also be CubeViewEILUID will
understands that this will be the constructor fier ¢class and will generate the appropriate cod&eMare
you declare the constructor public.

Then add a window to the CubeViewUI class. Highlidje name of the constructor in the FLUID browser
window and click olNew->Group->Window. In a similar manner add the following to the CuilssvUI
constructor:

e A horizontal roller namedr ot

e A vertical roller namedr ot

e A horizontal slider namegban

e A vertical slider namegpan

e A horizontal value slider name@om

None of these additions need be public. And theylksim't be unless you plan to expose them as péneo
interface for CubeViewUl.

When you are finished you should have somethirgttiks:

7 of 2¢

- CubeViewULfl ¥~ CubeView [=]ml[x]
File Edit Mew Help Zoom [10.0 [—— ||

wclass CubeViewl|
wiZubeYiewI()
wMindow mainWindow
»5roup

wGroup VChange T

Foller wvrot

slider ypan
wGroup HChange

slider xpan
,E?gﬁ; hh:i?i:n\.r'iew = This is the cube_view

Box cframe
Cubeview cube
‘alue Slider zoom

wshow(int arge, char **argy)
mainWindow->show(argc, argv);

Figure 9-4: FLUID window containing CubeView demo.

We will talk about thehow() method that is highlighted shortly.
Adding the CubeView Widget

What we have is nice, but does little to show alrec We have already defined the CubeView classvand
would like to show it within the CubeViewUI.

The CubeView class inherits the_a _W ndow class, which is created in the same way @S Box widget.
UseNew->Other->Box to add a square box to the main window. This belino ordinary box, however.

The Box properties window will appear. The keydtiihg CubeViewUI display CubeView is to enter
CubeView in the "Class:" text entry box. This tdflsUID that it is not arFl _Box, but a similar widget with
the same constructor. In the "Extra Code:" fieltee#i ncl ude "CubeVi ew. h"

This#i ncl ude is important, as we have just included CubeView aseember of CubeViewUI, so any public
CubeView methods are now available to CubeViewUl.

8 of 2¢

[=][ol{x]
GUI

Clags:|CubeView

MName:|cube % public
Extra Code:| #include "CubeView.h"
|
|
|

Callback:

User Data: | Wwhen: |[Felease =]
Type: [voids* Mo Change |
ND_OuerIay| Fevert | QK. | Cancel |

Figure 9-5: CubeView methods.

Defining the Callbacks

Each of the widgets we defined before adding Cubee\dan have callbacks that call CubeView methods.
You can call an external function or put in a stanount of code in the "Callback" field of the wadgpanel.
For example, the callback for thgan slider is:

cube->pany(((Fl _Slider *)o)->value());
cube->redraw();

We callcube- >r edraw() after changing the value to update the CubeViemdaiv. CubeView could easily
be modified to do this, but it is nice to keep tgposed in the case where you may want to do thareone
view change only redrawing once saves a lot of time

There is no reason no wait until after you havesdddubeView to enter these callbacks. FLUID asswuoes
are smart enough not to refer to members or funstibat don't exist.

Adding a ClassMethod

You can add class methods within FLUID that havihimg to do with the GUI. An an example add a show
function so that CubeViewUI can actually appeatt@nscreen.

Make sure the top level CubeViewUl is selected sgldctNew->Code->Function/M ethod. Just use the

nameshow() . We don't need a return value here, and since iWwaat be adding any widgets to this method
FLUID will assign it a return type afoi d.

9 of 2¢

=r function'method

I puklic | C declaration

Mamelargs): (blank for maind)
|show(int arga, char **argwv)

Beturn Type: (blank to return outermost widget)

] Cancel

Figure 9-6: CubeView constructor.

Once the new method has been added, highlighaitserand sele®dew->Code->Code. Enter the method's
code in the code window.

Adding Constructor Initialization Code

If you need to add code to initialize class, foamyple setting initial values of the horizontal amuditical
angles in the CubeView, you can simply highlighg @onstructor and seledew->Code->Code. Add any
required code.

Generating the Code

Now that we have completely defined the CubeViewl#,have to generate the code. There is one ialst tr
to ensure this all works. Open the preferencesgitbmEdit->Prefer ences.

At the bottom of the preferences dialog box iskég "Include Header from Code". Select that opaod
set your desired file extensions and you are imness. You can include the CubeViewUI.h (or whateve
extension you prefer) as you would any other Cas<l

FLUID Reference

The following sections describe each of the windowsLUID.

The Widget Browser

The main window shows a menu bar and a scrolliogvber of all the defined widgets. The name of. the
file being edited is shown in the window title.

The widgets are stored in a hierarchy. You can @mehclose a level by clicking the "triangle" a tbft of a
widget. The leftmost widgets are tharents, and all the widgets listed below them are tohildren. Parents
don't have to have any children.

The top level of the hierarchy is composedunitctions andclasses. Each of these will produce a single C++
public function or class in the outputxx file. Calling the function or instantiating theask will create all of
the child widgets.

The second level of the hierarchy containswirgows. Each of these produces an instance of class
FI _W ndow.

10 of 2¢

Below that are eithewnidgets (subclasses @i _W dget) or groups of widgets (including other groups). Plain
groups are for layout, navigation, and resize psepdab groups provide the well-known file-card tab
interface.

Widgets are shown in the browser by either thaine (such as "main_panel” in the example), or by their
type andlabel (such as "Button "the green™).

You select widgets by clicking on their names, which hightigkhem (you can also select widgets from any
displayed window). You can select many widgets kagding the mouse across them, or by using ShiitkClI
to toggle them on and off. To select no widgetiskah the blank area under the last widget. Notd hidden
children may be selected even when there is n@biadication of this.

You open widgets by double-clicking on them, or (to opewnesal widgets you have picked) by typing the F1
key. A control panel will appear so you can chatiigewidget(s).

Menu Items

The menu bar at the top is duplicated as a pop-emqunon any displayed window. The shortcuts fottedl
menu items work in any window. The menu items are:

File/Open... (Ctrl+o0)

Discards the current editing session and readgliffeaent. 1 file. You are asked for confirmation if you
have changed the current file.

FLUID can also readf d files produced by the Forms and XForms "fdesigwgpams. It is best to
File/Merge them instead of opening them. FLUID doesunderstand everything in &d file, and will print
a warning message on the controlling terminal flodata it does not understand. You will probabé&ed to
edit the resulting setup to fix these errors. Beftd not to save the file without changing the egaas
FLUID will write over the. f d file with its own format, which fdesign cannot déa

File/lnsert... (Ctrl+i)

Inserts the contents of another file, without changing the name of the current file. All the functions
(even if they have the same names as the curres) ane added, and you will have to use cut/pagtettthe
widgets where you want.

File/Save (Ctrl+s)

Writes the current data to thel file. If the file is unnamed then FLUID will askifa filename.
File/Save As...(Ctrl+Shift+S)

Asks for a new filename and saves the file.

File/Write Code (Ctrl+Shift+C)

"Compiles" the data into.axx and. h file. These are exactly the same as the filesggiwhen you run
FLUID with the- ¢ switch.

11 of 2¢

The output file names are the same as thefile, with the leading directory and trailing ™. 8tripped, and
".h" or ".cxx" appended.

File/Write Strings (Ctrl+Shift+W)

Writes a message file for all of the text label&rae in the current file.

The output file name is the same as.thefile, with the leading directory and trailing ".#tripped, and
"ixt", ".p0o", or ".msg" appended depending on liternationalization Mode

File/Quit (Ctrl+q)

Exits FLUID. You are asked for confirmation if ybiave changed the current file.

Edit/Undo (Ctrl+2)

This isn't implemented yet. You should do saverofie you can recover from any mistakes you make.
Edit/Cut (Ctrl+x)

Deletes the selected widgets and all of their cbildThese are saved to a "clipboard"” file andbmapasted
back into any FLUID window.

Edit/Copy (Ctrl+c)
Copies the selected widgets and all of their childio the "clipboard" file.
Edit/Paste (Ctrl+c)

Pastes the widgets from the clipboard file.
If the widget is a window, it is added to whatefiarction is selected, or contained in the curretection.

If the widget is a normal widget, it is added toatdver window or group is selected. If none iss @dded to
the window or group that is the parent of the auirelection.

To avoid confusion, it is best to select exactlg @ndget before doing a paste.
Cut/paste is the only way to change the parentwitiget.
Edit/Select All (Ctrl+a)

Selects all widgets in the same group as the cusedaction.

If they are all selected already then this selaltt@widgets in that group's parent. RepeatedlyryCtrl+a
will select larger and larger groups of widgetsilusterything is selected.

Edit/Open... (F1 or doubleclick)

12 of 2¢

Displays the current widget in the attributes patiehe widget is a window and it is not visibleen the
window is shown instead.

Edit/Sort

Sorts the selected widgets into left to right, tofpottom order. You need to do this to make naiogakeys
in FLTK work correctly. You may then fine-tune therting with "Earlier" and "Later". This does ndteat
the positions of windows or functions.

Edit/Earlier (F2)

Moves all of the selected widgets one earlier sleolamong the children of their parent (if posgibldis
will affect navigation order, and if the widgetseshap it will affect how they draw, as the latedget is
drawn on top of the earlier one. You can also hisetb reorder functions, classes, and windowsiwith
functions.

Edit/Later (F3)

Moves all of the selected widgets one later in pedeong the children of their parent (if possible).
Edit/Group (F7)

Creates a new _G oup and make all the currently selected widgets ceridf it.

Edit/Ungroup (F8)

Deletes the parent group if all the children ofeugp are selected.

Edit/Overlays on/off (Ctrl+Shift+0O)

Toggles the display of the red overlays off, withoianging the selection. This makes it easiee&lmx
borders and how the layout looks. The overlays balforced back on if you change the selection.

Edit/Project Settings... (Ctrl+p)

Displays the project settings panel. The outpehfimes control the extensions or names of thethikeare
generated by FLUID. If you check the "Include .bnfr .cxx" button the code file will include the headile
automatically.

The internationalization options are descrilsdr in this chapter

13 of 2¢

= Preferences

Gtid: Internationalization:

Horizontal: Use: |Mone]|
Yertical: &
=nap:| 3

Ctput File Mames:

Use "name.ext” to set name ar just "ext” to set only extension.

Header File:| .h

Code File:| . cxx

[" Include Header from Code |

Close

Figure 9-7: FLUID Preferences Window.
Edit/GUI Settings... (Shift+Ctrl+p)
Displays the GUI settings panel. This panel is usezbntrol the user interface settings.
New/Code/Function

Creates a new C function. You will be asked foama for the function. This name should be a legat C
function template, without the return type. You g@ass arguments which can be referred to by codéyype
into the individual widgets.

If the function contains any unnamed windows, it & declared as returning a FI_Window pointere Th
unnamed window will be returned from it (more tleare unnamed window is useless). If the function
contains only named windows, it will be declaredetsrning nothingvoi d).

It is possible to make thexx output be a self-contained program that can bgydethand executed. This is
done by deleting the function namenson(ar gc, ar gv) is used. The function will cashow() on all the
windows it creates and then calll: : run() . This can also be used to test resize behaviothar parts of the
user interface.

You can change the function name by double-clickinghe function.
New/Window

Creates a new _W ndow widget. The window is added to the currently sielddunction, or to the function
containing the currently selected item. The windeN appear, sized to 100x100. You can resize it to
whatever size you require.

The widget panel will also appear and is descriagat in this chapter.

14 of 2¢

New/...
All other items on the New menu are subclasse&s ofi dget . Creating them will add them to the currently

selected group or window, or the group or windowtaming the currently selected widget. The initial
dimensions and position are chosen by copying tinest widget, if possible.

When you create the widget you will get the widgetntrol panel, which is described later in thapter.
Layout/Align/...

Align all selected widgets to the first widget hretselection.

L ayout/Space Evenly!/...

Space all selected widgets evenly inside the salesppace. Widgets will be sorted from first to.last
L ayout/M ake Same Size/...

Make all slected widgets the same size as thesilsicted widget.

L ayout/Center in Group/...

Center all selected widgets relative to their pavadget

Layout/Grid... (Ctrl+g)

Displays the grid settings panel. This panel cdstitte grid that all widgets snap to when you mane
resize them, and for the "snap" which is how faidget has to be dragged from its original position
actually change.

Shell/Execute Command... (Alt+x)

Displays the shell command panel. The shell comnsuadmmonly used to run a 'make’ script to compile
the FLTK output.

Shell/Execute Again (Alt+g)

Run the shell command again.

Help/About FLUID

Pops up a panel showing the version of FLUID.
Help/On FLUID

Shows this chapter of the manual.

Help/Manual

15 of 2¢

Shows the contents page of the manual

The Widget Panel

When you double-click on a widget or a set of widg®u will get the "widget attribute panel".

When you change attributes using this panel, th@gbs are reflected immediately in the windows liseful
to hit the "no overlay" button (or type Ctrl+Shi@} to hide the red overlay so you can see the wsdgere
accurately, especially when setting the box type.

If you have several widgets selected, they may ligfferent values for the fields. In this case Wadue for
one of the widgets is shown. But if you change thikieaall of the selected widgets are changed to the new
value.

Hitting "OK" makes the changes permanent. Seledidgferent widget also makes the changes perntanen
FLUID checks for simple syntax errors such as misited parenthesis in any code before saving any tex

"Revert" or "Cancel" put everything back to whem yast brought up the panel or hit OK. Howevera t
current version of FLUID, changes to "visible" ditites (such as the color, label, box) are not nedxy
revert or cancel. Changes to code like the callback undone, however.

[=][0f[]
Label: | Cancel [MORRAL L]
Image: | Browse.. |
Inactive: | Browse.. |
Alignment: e | wee | | an|e||n
e W idth: Height:
Position: |325 [335 |50 |25
“alue:
Yalues: 0
Shortcut: |
Attributes: ®visible |8 active | ¢ Resizaple | hotspot |
Tooltip: |
Nu@verlay| Fevert | QK - | Cancel |
| I

Figure 9-8: The FLUID widget GUI attributes.
GUI Attributes
Label (text field)
String to print next to or inside the button. Yangut newlines into the string to make multiptee§. The

easiest way is by typing Ctrl+.

16 of 2¢

Symbolscan be added to the label using the at sign ("@").

Label (pull down menu)

How to draw the label. Normal, shadowed, engragad,embossed change the appearance of the text.

I mage

The active image for the widget. Click on tBeowse... button to pick an image file using the file chaose

I nactive

The inactive image for the widget. Click on BBeowse... button to pick an image file using the file chaose
Alignment (buttons)

Where to draw the label. The arrows put it on #i@é of the widget, you can combine the to put thie
corner. The "box" button puts the label insidewhgget, rather than outside.

Theclip button clips the label to the widget box, thieap button wraps any text in the label, and tiée
image button puts the text over the image instead okutiie image.

Position (text fields)

The position fields show the current position aizé ®f the widget box. Enter new values to move/and
resize a widget.

Values (text fields)

The values and limits of the current widget. Depegan the type of widget, some or all of thesé&iBemnay
be inactive.

Shortcut

The shortcut key to activate the widget. Click ba shortcut button and press any key sequence tioese
shortcut.

Attributes (buttons)

TheVisible button controls whether the widget is visible (onhidden (off) initially. Don't change this for
windows or for the immediate children of a Tabsugro

TheActive button controls whether the widget is activaten) @ deactivated (off) initially. Most widgets
appear greyed out when deactivated.

TheResizable button controls whether the window is resizealsi@ddition all the size changes of a window
or group will go "into" the resizable child. If ydhave a large data display surrounded by buttans, y
probably want that data area to be resizable. Yaouget more complex behavior by making invisiblgdso

the resizable widget, or by using hierarchies otigs. Unfortunately the only way to test it is torpile the

17 of 2¢

program. Resizing the FLUID window et the same as what will happen in the user program.

TheHotspot button causes the parent window to be positionédtvat widget centered on the mouse. This

position is determinedhen the FLUID function is called, so you should call it immediately before showing
the window. If you want the window to hide and thheappear at a new position, you should have your

program set the hotspot itself just beferew() .

TheBorder button turns the window manager border on or@ff.most window managers you will have to

close the window and reopen it to see the effect.

X Class (text field)

The string typed into here is passed to the X wimdtanager as the class. This can change the icon or
window decorations. On most (all?) window managerswill have to close the window and reopen is¢e

the effect.

Label Font: |Helvetica |14

Cown Box: [MO BOX

Box |UP BOx ﬂ Color
ﬂ Select Calar

Mo Overlay Fevert QK - Cancel

[=[Ol[x]

Style Attributes

Label Font (pulldown menu)

Font to draw the label in. Ignored by symbols, laig®, and pixmaps. Your program can change thelactua

font used by these "slots" in

L abel Size (pulldown menu)

Pixel size (height) for the font to draw the lalmelignored by symbols, bitmaps, and pixmaps. Teotke

Figure 9-9: The FLUID widget Style attributes.

case you want somedther than the 16 provided.

result without dismissing the panel, type the neanmber and then Tab.

18 of 2¢

Label Color (button)
Color to draw the label. Ignored by pixmaps (bitsyapowever, do use this color as the foregrounalrol
Box (pulldown menu)

The boxtype to draw as a background for the widget.

Many widgets will work, and draw faster, with adiine" instead of a "box". A frame does not draw the
colored interior, leaving whatever was alreadyé¢hasible. Be careful, as FLUID may draw this ok the
real program may leave unwanted stuff inside troiget.

If a window is filled with child widgets, you capaed up redrawing by changing the window's box tgpe
"NO_BOX". FLUID will display a checkerboard for amyeas that are not colored in by boxes. Notethist
checkerboard is not drawn by the resulting progiastead random garbage will be displayed.

Down Box (pulldown menu)

The boxtype to draw when a button is pressed osdare parts of other widgets like scrollbars arldatars.
Color (button)

The color to draw the box with.

Select Color (button)

Some widgets will use this color for certain paRisUID does not always show the result of thisstisithe
color buttons draw in when pushed down, and theradflinput fields when they have the focus.

Text Font, Size, and Color

Some widgets display text, such as input fieldd;gown menus, and browsers.

19 of 2¢

Class:| | Mormal -]

MName: | ¥ public
Extra Code:|
|
|
|

Callback: |cancel_chb

User Data: | Wwhen: |[Felease =]
Type: [voids* " Ma Change |
Mo Overlay | Fevert | QK | Cancel

Figure 9-10: The FLUID widget C++ attributes.
C++ Attributes
Class

This is how you use your own subclassesl ofv dget . Whatever identifier you type in here will be itlass
that is instantiated.

In addition, nati ncl ude header file is put in then file. You must provide &i ncl ude line as the first line of
the "Extra Code" which declares your subclass.

The class must be similar to the class you arefsppdt does not have to be a subclass. It is sones

useful to change this to another FLTK class. Culyghe only way to get a double-buffered windowtas
change this field for the window to "FI_Double_Wawd' and to add "#include <FL/FI_Double_Window.h>"
to the extra code.

Type (upper-right pulldown menu)
Some classes have subtypes that modify their appeaior behavior. You pick the subtype off of thisnu.
Name (text field)

Name of a variable to declare, and to store a potntthis widget into. This variable will be oty
"<class>*". If the name is blank then no varialdeieated.

You can name several widgets with "name[0]", "nakjie['name[2]", etc. This will cause FLUID to decta
an array of pointers. The array is big enough tiratighest number found can be stored. All widgedsin
the array must be the same type.

20 of 2¢

Public (button)

Controls whether the widget is publicly accessilhen embedding widgets in a C++ class, this céstro
whether the widget isubl i ¢ orpri vat e in the class. Otherwise is controls whether théget is declared
static or global éxtern).

Extra Code (text fields)

These four fields let you type in literal linesaafde to dump into thenh or. cxx files.

If the text starts with & or the wordext er n then FLUID thinks this is an "include” line, artdd written to
the. h file. If the same include line occurs several snigen only one copy is written.

All other lines are "code" lines. The current witlggepointed to by the local variabde The window being
constructed is pointed to by the local variakl®& ou can also access any arguments passed tortbioin
here, and any named widgets that are before tleis on

FLUID will check for matching parenthesis, bracasd quotes, but does not do much other error chgcki
Be careful here, as it may be hard to figure oudtwhidget is producing an error in the compileydti need
more than four lines you probably should call action in your own cxx code.

Callback (text field)

This can either be the name of a function, or alssnagpet of code. If you enter anything but lette
numbers, and the underscore then FLUID treatsabéds.

A name names a function in your own code. It mestiéclared asoi d nane(<cl ass>*, voi d*).

A code snippet is inserted into a static functiomhie. cxx output file. The function prototype vei d
name(cl ass *o, void *v) so that you can refer to the widgetaand theuser _dat a() asv. FLUID will
check for matching parenthesis, braces, and quot¢sloes not do much other error checking. Befalre
here, as it may be hard to figure out what widggtroducing an error in the compiler.

If the callback is blank then no callback is set.
User Data (text field)

This is a value for theser _dat a() of the widget. If blank the default value of zésased. This can be any
piece of C code that can be cast tmiad pointer.

Type (text field)

Thevoi d * in the callback function prototypes is replacethvifis. You may want to useng for old
XForms code. Be warned that anything other than * is not guaranteed to work! However on most
architectures other pointer types are ok, laind is usually ok, too.

When (pulldown menu)

When to do the callback. This canMever, Changed, Release, or Enter Key. The value oEnter Key is
only useful for text input fields.

21 of 2¢

There are other rare but useful values forwtien() field that are not in the menu. You should useetkiea
code fields to put these values in.

No Change (button)
TheNo Change button means the callback is done on the mataiwegt even if the data is not changed.
Selecting and Moving Widgets

Double-clicking a window name in the browser wilglay it, if not displayed yet. From this dispkayu can
select widgets, sets of widgets, and move or rdbiz®. To close a window either double-click itypwe ESC.

To select a widget, click it. To select severalgéts drag a rectangle around them. Holding dowfh wiii
toggle the selection of the widgets instead.

You cannot pick hidden widgets. You also cannotsiessome widgets if they are completely overlagped
later widgets. Use the browser to select theseetsdg

The selected widgets are shown with a red "ovetiag'around them. You can move the widgets by
dragging this box. Or you can resize them by dragtiie outer edges and corners. Hold down the< k
while dragging the mouse to defeat the snap-to-gffett for fine positioning.

If there is a tab box displayed you can change fwbltld is visible by clicking on the file tabs. &lehild you
pick is selected.

The arrow, tab, and shift+tab keys "navigate" #lection. Left, right, tab, or shift+tab move t@thext or
previous widgets in the hierarchy. Hit the rightoar enough and you will select every widget inwiadow.
Up/down widgets move to the previous/next widgl&t bverlap horizontally. If the navigation does$ no
seem to work you probably need to "Sort" the widg&his is important if you have input fields, dsTK
uses the same rules when using arrow keys to metveebn input fields.

To "open" a widget, double click it. To open seVveragets select them and then type F1 or pick
"Edit/Open" off the pop-up menu.

Type Ctrl+o to temporarily toggle the overlay ofitmout changing the selection, so you can see ttget
borders.

You can resize the window by using the window mandgrder controls. FLTK will attempt to round the
window size to the nearest multiple of the gricesand makes it big enough to contain all the wslgédoes
this using illegal X methods, so it is possiblevili barf with some window managers!). Notice thia¢ actual
window in your program may not be resizable, antlif, the effect on child widgets may be diffetren

The panel for the window (which you get by doublieking it) is almost identical to the panel foryaother
Fl_Widget. There are three extra items:

I mages
The contents of the image files in themage andlnactive text fields are written to thecxx file. If many

widgets share the same image then only one coggjtien. Since the image data is embedded in the
generated source code, you need only distribut€#¥ecode and not the image files themselves.

22 of 2¢

However, thdilenames are stored in thef1 file so you will need the image files as well éad the 1 file.
Filenames are relative to the location of the file and not necessarily the current directory. Meommend
you either put the images in the same directothasf | file, or use absolute path names.

Notesfor All Image Types
FLUID runs using the default visual of your X satvEhis may be 8 bits, which will give you dithered

images. You may get better results in your actuadiam by adding the code "Fl::visual(FL_RGB)" twy
code right before the first window is displayed.

All widgets with the same image on them share #mescode and source X pixmap. Thus once you have pu

an image on a widget, it is nearly free to putsame image on many other widgets.

If you edit an image at the same time you are uimgFLUID, the only way to convince FLUID to rédhe
image file again is to remove the image from atigéts that are using it or re-load the file.

Don't rely on how FLTK crops images that are owglte widget, as this may change in future versidhe
cropping of inside labels will probably be unchashge

To more accurately place images, make a new "badfet and put the image in that as the label.
XBM (X Bitmap) Files

FLUID reads X bitmap files which use C source ctuldefine a bitmap. Sometimes they are stored thih
".h" or ".bm" extension rather than the standaxérh" extension.

FLUID writes code to construct an FlI_Bitmap image ase it to label the widget. The "1’ bits in ltiitenap

are drawn using the label color of the widget. ¥an change this color in the FLUID widget attritsupanel.

The '0' bits are transparent.

The program "bitmap" on the X distribution doesaglequate job of editing bitmaps.
XPM (X Pixmap) Files

FLUID reads X pixmap files as used by thexpmlibrary. These files use C source code to defipmap.
The filenames usually have the ".xpm" extension.

FLUID writes code to construct an FI_Pixmap imagd ase it to label the widget. The label colorha t
widget is ignored, even for 2-color images thatlddae a bitmap. XPM files can mark a single colebaing
transparent, and FLTK uses this information to gateea transparency mask for the image.

We have not found any good editors for small icqgnatures. For pixmaps we have usééaintand the
KDE icon editor.

BMP Files

FLUID reads Windows BMP image files which are oftesed in WIN32 applications for icons. FLUID
converts BMP files into (modified) XPM format andas a FI_BMP_Image image to label the widget.
Transparency is handled the same as for XPM ##smage data is uncompressed when written to the
source file, so the code may be much bigger thandip file.

23 of 2¢

GIF Files

FLUID reads GIF image files which are often usetiifML documents to make icons. FLUID converts GIF
files into (modified) XPM format and uses a Fl_Glifiaage image to label the widget. Transparency is
handled the same as for XPM files. All image dataricompressed when written to the source filéhso
code may be much bigger than thef file. Only the first image of an animated GIF fiseused.

JPEG Files

If FLTK is compiled with JPEG support, FLUID caraceJPEG image files which are often used for digita
photos. FLUID uses a FI_JPEG_Image image to ldtgehidget, and writes uncompressed RGB or grayscale
data to the source file.

PNG (Portable Network Graphics) Files

If FLTK is compiled with PNG support, FLUID can ee&NG image files which are often used in HTML
documents. FLUID uses a FI_PNG_Image image to ldeelvidget, and writes uncompressed RGB or
grayscale data to the source file. PNG images oavide a full alpha channel for partial transpaserand
FLTK supports this as best as possible on eacfoptat

| nter nationalization with FLUID

FLUID supports internationalization (118N for shioof label strings used by widgets. The preferences
window (Ct r | +p) provides access to the 118N options.

18N Methods

FLUID supports three methods of I18N: use none,@iNe gettext, and use POSIX catgets. The "use none"
method is the default and just passes the labegstas-is to the widget constructors.

The "GNU gettext" method uses GNU gettext (or alaimntext-based 118N library) to retrieve a localkiz
string before calling the widget constructor.

The "POSIX catgets" method uses the POSIX catgetstibn to retrieve a numbered message from a
message catalog before calling the widget construct

Using GNU gettext for 118N

FLUID's code support for GNU gettext is limiteddalling a function or macro to retrieve the locatizabel;
you still need to calet | ocal e() andt ext domai n() Orbi ndt ext domai n() to select the appropriate
language and message file.

To use GNU gettext for 118N, open the preferencieslow and choose "GNU gettext" from the "Use"
chooser. Two new input fields will then appeardatcol the include file and function/macro nameise
when retrieving the localized label strings.

24 of 2¢

= Preferences

Gtid: Internationalization:

Haorizontal: |5

Vertical: |5 #include;| <1ibint1.h>

Snap:| 3 Function:|gettext

Ctput File Mames:

Use "name.ext” to set name ar just "ext” to set only extension.

Header File:| .h

Code File:| . cxx

[" Include Header from Code |

Close

Figure 9-11: Internationalization using GNU gettext.

The "#include" field controls the header file talude for I18N; by default this g i bi nt 1 . h>, the standard
I18N file for GNU gettext.

The "Function” field controls the function (or magthat will retrieve the localized message; byadéfthe
get t ext function will be called.

Using POSI X catgetsfor 118N

FLUID's code support for POSIX catgets allows yowse a global message file for all interfaces fiea
specific to eachf i file; you still need to caBet | ocal e() to select the appropriate language.

To use POSIX catgets for 118N, open the preferemtedow and choose "POSIX catgets" from the "Use"

chooser. Three new input fields will then appeardntrol the include file, catalog file, and setwher for
retrieving the localized label strings.

25 of 2¢

= Preferences

Gtid: Internationalization:

Haorizontal: |5

Vertical,| 5 #include:| <nl_types.h>

Snap: |3 File:|

Sef:| 1

Ctput File Mames:

Use "name.ext” to set name ar just "ext” to set only extension.

Header File:| .h

Code File:| . cxx

[" Include Header from Code |

Close

Figure 9-12: Internationalization using POS X catgets.

The "#include" field controls the header file talude for I18N; by default this knl _t ypes. h>, the
standard 118N file for POSIX catgets.

The "File" field controls the name of the cataldg Yariable to use when retrieving localized mgssaby
default the file field is empty which forces a lb¢static) catalog file to be used for all of thendows
defined in your 1 file.

The "Set" field controls the set number in the lcgtdile. The default set is 1 and rarely needsdahanged.

26 of 2¢

