
Last revised: 2021.01.03
http://web.ncf.ca/di874/computers/llinuxsummary/linuxsummary.html

Basic Linux commands by example

This is intended to be a quick reference to some of the most useful Linux commands.

All these commands have many options to make them more versatile. Do "man command" to see the full description of
what can be done with these commands.

AREA FUNCTION COMMAND ACTION

Directories change cd Change to my home directory
cd .. Go up one level
cd /dir1/dir2 Change to this absolute directory
cd dira/dirb Change to directory relative to current directory

create mkdir mydir Make new directory here
delete rmdir mydir Remove directory (must be empty)
display pwd Print working directory
paths basename a/b/file.txt Extract filename from path: "file.txt"

dirname a/b/file.txt Extract directories from path: "a/b"
permissions r You may LIST FILES in that directory

w You may CREATE AND DELETE FILES in that directory
x You may cd to that directory

shortcuts . Current directory
.. Parent directory
~ Home directory

Files append echo "good bye" >> x.txt Append text to end of file
cat x.txt >> y.txt Append first file to end of second file

compare diff file1 file2 Compare two text files
diff3 file1 file2 file3 Compare three files
bdiff file1 file2 Compare very large files
cmp file1 file2 Compare files byte by byte

concatenate cat myfile1 myfile2 > myfile3 Concatenate two filess making a new file.
copy cp file1 file2 Copy file1 to file2
count wc myfile Count liness wordss and characters in file.
create echo "hello" > myfile Create new file with this text

echo -n > myfile Create a zero length file
touch myfile Create a zero length file (if it doesn't already exist)
vi x.txt Create new file with editor (see below)

AREA FUNCTION COMMAND ACTION
...files delete rm x.txt Remove a file.

You don't have to be the owner of the files but you
must have w (write) permission on the directory
containing the file.

rm -r dir1 Remove dir1 and everything in it
rm -rf dir1/* Clear out everything under dir1s but keep dir1

The “f” handles the case where there happens to
already be nothing under dir1.

rm dir1 DO NOT USE
dir1 is a directory
This will ALWAYS fail because rm by itself will not
remove a directory

rm dir1/* DO NOT USE
Remove all files in dir1s but not dir1 itself
This will fail if there any subdirectories

rm -r dir1/* DO NOT USE
Remove everything under dir1s but not dir1 itself
This will fail if there is nothing under dir1.

display cat myfile Display whole file on terminal
head myfile Show first 10 lines
tail myfile Show last 10 lines
less myfile Page file on terminal. (space to advances "q" to quit)
od -Ad -tu1 myfile | more Show decimal values of each byte of the files paging

output
filter tr -d "\015" < file1 > file2 Remove all carriage returns from a file (CRLF > LF)

tr -s " " " " < file1 > file2 Compress consecutive blanks to one blank
find find . -name myfile -type f -print Find file myfile searching from current directory

find / -name mydir -type d -print Find directory mydir searching entire hierarchy
(slow!)

find . -name 'ufw*' -type f -print Find matching filess note quotes to stop shell
expansion

list ls List files in current directory.
ls -l or ll Detailed (long) list.
ls -a Show hidden files (they start with '.')

move mv tax.txt mydir/ Move tax.txt file to directory mydir
mv tax.txt /arch/2004/ Copy tax.txt to different volume

So mv renamess movess or copies files depending on
the target.
rename - if the source and target directories are the
same
move - if the source and target directories are on the
same logical volume
copy - if the source and target directories are on
different logical volumes

ownership chown frank:sales x.txt Change ownership of x.txt to user frank and group
sales. Only the owner change ownership to someone
else.

chgrp sales y.txt Just change owning group to sales

AREA FUNCTION COMMAND ACTION
...files permissions r You may read that file

w You may write to that file
x You may execute that file
chmod 700 myfile
umask 0000 Set default create file permissions to 777 (open to

world).
rename mv sales.txt account.txt Rename sales.txt to account.txt

rename ‘s/\.txt$/\.dat/’ *.txt Rename all .txt files to .dat
 (use -v to sees -n to do dry run)

rename ‘y/A-Z/a-z/’ FRED*.* Change all FRED*.* filenames to lower case
rename 's/(^..)\.png/c$1\.png/'
*.png

Insert a ‘c’ at the front of all filenames nn.png
Note $1 syntaxs usual is \1 to refer to preceding
group 1

search grep abc myfile Search myfile for occurrences of "abc"
sort/merge/extract sort file1 > file2 Sort file on whole lines creating new output file.

comm -1 x.txt y.txt > z.txt Compare sorted files and suppress lines unique to
x.txt

cut -b 10-20s35-40 x.txt > y.txt Put columns 10-20 and 35-40 into a new file
join -o 1.3 2.2 x.txt y.txt > z.txt Merge x.txt and y.txt on common field and output

column 3 from x.txt and column2 from y.txt
paste x.txt y.txt > z.txt Paste lines togethers separated by tabs
paste -d "\n" a.txt b.txt c.txt > z.txt Splice files together line by line.
uniq myfile > newfile Remove adjacent repeated lines
uniq -f1 -u myfile > newfile Ignore first field when testing for duplicate liness

and print just the lines that don't have duplicates
split split -l 1000 myfile Split myfile into pieces xaas xabs xac ... of 1000 lines

each
type file xyz What kind of file is this?
wildcards ls abc?.txt ? - exactly one character

Will find abc1.txts abck.txts etc.s but not abc.txt
ls a*.txt * - 0 to any number of characters

Will find a1.txts ahello.txts and also a.txt.
ls a[3-5].txt Will find a3.txts a4.txts and a5.txt

zip/unzip zip small bigfile.txt Zips one file: bigfile.txt is zipped into small.zip
zip -j -v zipfile mydir/* Zip all files in the directory mydir into zipfile.zip.

-j do not include directory path in zipfile (junk it).
-v give information as it proceeds (be verbose).

zip -r -v ../myzip.zip * Zip all files and subdirectories of current directory
and place resulting zip file one level up (the ../) so it
doesn't get involved itself in the zip.
-r recurse through all subdirectories
-v be verbose

zip -j -v at032749.zip \
$r/at032[7-9]*.mo \
$r/at033*.mo \
$r/at034*.mo

Zip files at0327*.mo to at0349*.mo junking the path
contained in $r.

unzip myzip Unzip the zip archives creating all contained
directoriess if anys rooted at current directory.

AREA FUNCTION COMMAND ACTION
...files unzip -aa myzip While unzippings convert MS-DOS style carriage

return/line feed to just a UNIX style line feed.
unzip -vlt myzip Don't unzip. Just list the contents and make sure all

contained files are unzippable.
unzip -j myzip -d mydir Unzip myzips but put the files into mydir instead of

heres and don't use any contained paths.
Help commands man grep Show help on grep command

man man Show help on using man
Permissions show ll x.txt rwx rwx rwx (owner group world)

file: r-read w-write x-execute
directory: r-list files w-create/delete files x-cd to dir

change Easiest way is to think of each group of rwx as one
digit with r=4s w=2s x=1

chmod 777 x.txt World accessible and executable: 777=rwx rwx rwx
chmod 750 myprog Only I can deletes me and group can execute:

750=rwx r-x ---
chmod 700 myprog Only I can execute: 700=rwx --- ---
chmod 644 Only I can writes anyone can read: 644=rwx r-- r--
umask 0000 Set default permissions to be used when creating a

file or directory to XOR of mask:
0000 gives 777 ie rwx rwx rwx
0133 gives 644 ie rw- r-- r--

Piping cat myfile | tee x.txt Display my file on the terminal AND save it to
another file at same time.

System cpu cat /proc/cpuinfo Processor cpu info
date/time date Show current date and time
domain name hostname -f Show fully qualified domain name
IP address hostname -i Show system's IP address
Linux kernel uname -a Show systems kernels processors etc.
memory cat /proc/meminfo Processor memory info
uptime uptime How long since last reboot
last reboot who -a What time was the last reboot
run level who -a What is the system run level

Users log out Ctrl d Exit system. ("logout" may work on some systems
too)

me whoami Show my user name
password passwd Change password
show users ps List my processes

ps -u userx Show somebody else's processes
ps -ef Show everybody's process fully.

logged in users who Show usernamess ttys address
my info who am I A trick. who with 2 args means who -ms which gives

my usernames ttys address

Handling special characters

TASK EXAMPLE EXPLANATION

Get a newline into a variable nl=$'\n'
echo 'aaa' "$nl" 'bbb'
aaa
bbb

echo ${#nl}
1

There is some setting that causes shells to strip non-printing
characters when doing string operations. eg
x=$(echo -e "\n")
will not put anything into x. Nor will printf to a variables etc.
And if the last character of a file f.txt is a newlines then
x=$(tail --bytes=1 f.txt)
will not put a newline in x

The construct $' ' will preserve special characters. When
you use its surround it with double quotes as shown.

How to get a control character nl=$'\cj' This is also a newline.
Escape character esc=$'\E'
Any character by code value xx=$'\xHH' Using hex digits.

How to enter any character on
a keyboard that doesn't have
it.

Ctrl/Shift/u
Release (see underlined u)
005C
Enter
Result: \

Pattern removal

TYPE USAGE EXPLANATION

${parameter#pattern} Remove minimum leading pattern
${parameter##pattern} Remove maximum leading pattern
% ${parameter%pattern} Remove minimum trailing pattern
%% ${parameter%%pattern} Remove maximum trailing pattern

x=’10%abc’
y=${x%\%*}
echo $y
10

How to handle special character # or % in string
Remove everything after and including ‘%’

awk - text file processor

TASK EXAMPLE EXPLANATION

Find regular text awk '/123a/' x.txt Print all lines containing text 123a
Find except awk '!/123a/' x.txt Print all lines that DON'T contain text 123a
Find a "meta" character awk '/\//' x.txt Print all lines containing a /. Note preceding \ to force /

to be interpreted as a real /.
Find this or that awk '/^D/ || /^H/' x.txt Print all lines that BEGIN with a D or an H
Find and extract awk '/^T/ {print substr($0s1s10)} !/^T/' x.txt > z.txt Put in file z.txt the first 10 characters of lines that start

with T, and all of the remaining lines.
More complex
find/extract

awk '/^T0[13]....48711/ {print substr ($0s1s23) "110"
substr ($0s27)} !/^T0[13]....48711' x.txt > z.txt

Find all records that start with T01 or T03 and have
48711 in positions 8-12; change positions 24-26 to
110. Leave other records untouched.
(This statement is typed all on one physical line.)

Use begin/end actions
Use external program
Calculate total field value

awk -f prog.awk x.txt > z.txt
where prog.awk contains:
BEGIN { x=0 }
/^T/ { x=x+substr($0s17s2)}
END { print "count = " x }

Total the field in positions 17-18 on each record
beginning with a T.

Specify record separator echo $PATH | awk -v RS=':' '{print}' Change default line separator to ':' so can print your
PATH components one on each line

awk '/tasklist/ {getline print getline print}' x.txt Find lines containing "tasklist", and print the following
two lines.

sed - file filter

TASK EXAMPLE EXPLANATION

sed -n 's/^[[:blank:]]\+// p' extract.txt Condense all leading blank space (spaces and/or
tabs) to nothing.
Print just the lines affected.

sed 's/_// g' lt.txt Remove all underscores

sed -n ‘10,15 p’ x.txt Print lines 10-15
Print just the lines affected.

sed -n -s ‘10,15’ *.txt Print lines 10-15 from every file.txt
The -s means consider as separate filess not one
stream (where line numbers would never reset)

vi - text editor
AREA COMMAND EXPLANATION

Start vi x.txt
i

Edit new or existing file x.txt.
If it's a new file, give the "i" command right away to start inserting text.

Modes <ESC> Stop entering text and go to command mode
Move in file G Go to end of file

1G Go to top of file
Move by windows ^F Forward one window

n^F Forward n windows
^D Forward ½ window
^B Back one window
n^B Back n windows
^U Back ½ window

Move in window H Home
M Middle
L Last line

Move in line 0 Beginning of line (zero)
$ End of line
+ Beginning of next line
- Beginning of previous line
n| Column n
←↑→↓ Arrows should work

Character editing i Insert before cursor
x Delete current character
R Replace current character (and following)
~ Toggle case

Line editing O Open new line before current line (capital letter O)
o Open new line after current line
dd Delete current line
J Join this line and next
dd
...
p

Cut and paste one line

mz
...
d`z
...
p

Mark beginning of range

Mark end and cut

Paste
Search / Specify search text

n next match
Substitute :%s/aaa/bbb/g Replace aaa with bbb everywhere

:.s$s/aaa/bbb/g ... from current line to last line
:1s.s/aaa/bbb/g ... from first line to current line

Exit :q! <Enter> Quit without saving
ZZ Save file and exit

Regular expressions
Summary

c matches the non-metacharacter c.
\c matches the literal character c.
. matches any character including newline.
^ matches the beginning of a string.
$ matches the end of a string.
[abc…] character lists matches any of the characters abc....
[^abc…] negated character lists matches any character except abc....
r1|r2 alternation: matches either r1 or r2.
r1r2 concatenation: matches r1s and then r2.
r+ matches one or more r's.
r* matches zero or more r's.
r? matches zero or one r's.
(r) grouping: matches r.
r{n}
r{ns}
r{nsm} One or two numbers inside braces denote an

interval expression. If there is one number in
the bracess the preceding regular expression r
is repeated n times. If there are two numbers
separated by a commas r is repeated n to m
times. If there is one number followed by a
commas then r is repeated at least n times.
Interval expressions are only available if
either --posix or --re-interval is specified on
the command line.

Above from ‘man awk’. See the following sites for complete details:

http://web.mit.edu/gnu/doc/html/regex_toc.html
http://www.gnu.org/software/gawk/manual/html_node/Regexp.html

Note that regular expressions are normally enclosed within slashes, eg /c/
This has been omitted in the examples.

Escaping special characters

It may be necessary to "escape" (ie, precede with a \) certain characters.
Sometimes it is required because the character has special meaning to the regular expression analyzer.
For example ? means 0 or 1 occurrences of a character. So if you want to look for a literal ?, you have to type \?.

Sometimes it is necessary to escape characters because you are typing the regular expression into a BASH command
line, and the character means something special to BASH.
For example { is used to repeat occurrences a specific number of times, but { is also a BASH meta character. So you
have to type \{

Usage in a shell script

To use in a shell script, you can use the compound command [[]] with the reg expression comparison operator =~ and
test the result with $?

[[“12a3” =~ ^[[:digit:]]+$]]
echo $?

0 - matches
1 - doesn't match

x=’ <en>hello there</en>’
[[“$x” =~ ^.*\<en\>.*\</en\>]]
echo $?
0

Regular expression examples

YOU WANT TO MATCH EXAMPLE EXPRESSION TO USE WHAT THE EXAMPLE MATCHES

One specific ordinary character t The character ‘t’
One specific meta character * The meta character ‘*’

Have to "escape" it with \ to remove special meaning of
the meta character

One possible character from a
list

[hp8] h or p or 8
That is, you specify a list of possibilities

One possible character from a
pre-defined list

[[:alnum:]] Same as [a-zA-Z0-9]
These are system defined lists, or "classes".
The actual class is [:alnum:], and it can only be used
inside the list brackets [].

► [[:alpha:]] Same as [a-z A-Z]
[[:blank:]] A blank (space or tab)
[[:cntrl:]] Any control character (0-31 ASCII)

► [[:digit:]] 0-9
[[:graph:]] A printable, visible character (ie blank not included)

► [[:lower:]] a-z
[[:print:]] Any non control character
[[:punct:]] Not a letter, digit, control, or blank
[[:space:]] Whitespace: blank, tab,

► [[:upper:]] A-Z
[[:xdigit:]] Hexadecimal: 0-9, a-f, A-F

[[:lower:][:digit:]] a-z or 0-9
One possible character from a
range

[g-m] Any of g, h, i, j, k, l, m

[3-6] Any of 3, 4, 5, 6

Any character . Any character

Any character except [^s] Any character except s
[^ntz] Any character except n or t or z
[^[:digit:]] Any character except a digit

Several characters axz axz
a[xz] ax or az
a.[xz] aax, abx, acx, adx, ... aaz, abz, acz, adz, ...
a..c az9c, a3{c, ...
[[:lower:]][[:digit:]] a-z followed by 0-9

(Compare with [[:lower:][:digit:]] above)
[^(ntz)] Anything except ntz

(Compare with [^ntz] above. The () means treat the
enclosed as one regular expression on its own.)

[^s]kde kde, but not skde

Repeated expressions a? 0 or 1 a's (at least! - could be more)
a* 0 or more a's (any number of a's, including none)
a+ 1 or more a's (at least 1 a)

a.*9 a, zero or more characters, 9
[[:alpha:]][[:digit:]]* an alpha followed by 0 or more digits
a{25} 25 a's

Note that with awk you have to include switch --posix to
use {} repetition. And with sed you have to include -r
switch.

[[:digit:]]{4}\-[[:digit:]]{2}\-[[:digit:]]{2}]] yyyy-mm-dd
Positioning (anchoring) ^abc abc at the beginning of the line or string

^..fred any two characters at the beginning, followed by fred
abc$ abc at the end of the line or string
hello..$ hello and then any two characters and then the end
^$ A blank line
^[[:digit:]]+$ The whole line is one or more digits

Combining abc|xyz abc OR xyz
abc[^(xyz)] abc followed by anything except xyz

