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Abstract 

 
Emergence has traditionally been described as satisfying specific properties, notably 

nonreducibility of the emergent object or properties to their substrate, novelty, and 

unpredictability from the properties of the substrate. Sometimes more mysterious 

properties such as independence from the substrate, separate substances and 

teleological properties are invoked. I will argue that the latter are both unnecessary 

and unwarranted. The descriptive properties can be analyzed in more detail in logical 

terms, but the logical conditions alone do not tell us how to identify the conditions 

through interactions with the world. In order to do that we need dynamical properties 

– properties that do something. This paper, then, will be directed at identifying the 

dynamical conditions necessary and sufficient for emergence. Emergent properties 

and objects all result or are maintained by dissipative and radically nonholonomic 

processes. Emergent properties are relatively common in physics, but have been 

ignored because of the predominant use of Hamiltonian methods assuming energy 

conservation. Emergent objects are all dissipative systems, which have been 

recognized as special only in the past fifty years or so. Of interest are autonomous 

systems, including living and thinking systems. They show functionality and are self 

governed. 
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1. Logical conditions for emergence 

 Emergence is usually attributed to things that have new properties not present 

in the phenomena from which they are formed. Some emergentists invoke notions of 

separate substances, causal independence and teleology that border on obscurantism. 

They believe that emergent properties must "arise from" but not be causally 

dependent on underlying or prior properties. Whether or not this position is coherent, 

it is certainly mysterious, and evidence in its favour is lacking. The only place in 

modern science that indeterminism is possibly supported is in quantum mechanics 

(even there the laws are deterministic). Otherwise, the evidence for determinism is 

very strong, certainly in the macroscopic domains where emergent phenomena occur. 

Furthermore, teleological causes are not known to work independently of the usual 

physical causes. 

 The metaphysical problems with explanatorily independent domains in a 

common world, together with the evidence for physical determination of all but the 

most fundamental properties justify the principle of supervenience (Kim, 1978; 

Rosenberg, 1978; 1985): If all of the (determinate) physical facts are determined, then 

all (determinate) facts are determined. Kim (1978) bases the principle on a general 

metaphysical position that the world is determined by its physical structure, whereas 

Kincaid (1987) suggests that the principle is empirically based. I believe that the 

metaphysical and empirical reasons are each sufficient independently, but combined 

they are stronger than either alone. Each answers certain doubts otherwise left open 

by the other. If emergence entails radical indeterminism the principle of 

supervenience rules it out. Nagel, however, (1961: 377) pointed out that although 

emergence is sometimes associated with radical indeterminism and/or teleological 
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causation, this association is not essential. Let us assume that his usage, which follows 

C.D. Broad’s (1925), is authoritative. 

The major physicalist alternative to emergentism is ontological reductionism. 

Assuming physicalism and determinism, and a modest finitism implying the closure 

and self-sufficiency of objects on their composition (sometimes called atomism), 

ontological reduction is in principle always possible (Rosenberg, 1985: 62-64). This 

sort of reduction requires peculiar physical properties and objects (sometimes called 

"logical constructs"), as well as an artificial consideration of systems as closed. If we 

reject finitism, closure and logical constructs as the figments of a logician's 

imagination, microreduction is not so easily justified.  

Microreduction does not easily account for the organizing effect of higher 

level (more extended) entities (Campbell, 1974). The reductionist must hold that these 

capabilities were present at the lowest level all along, and that nothing new has been 

acquired. From the reductionist perspective, composition, far from creating new 

capabilities, places constraints on the system that eliminate certain possibilities. The 

reductionist is forced to reinterpret the appearance of new phenomena as the 

elimination of available possibilities. Aside from the awkwardness of this 

interpretation, reductionism must find some way to reconcile the elimination of 

possibilities through composition with the continued presence of the possibilities in 

the underlying microstructure. I will return to this issue in section 3 below. 

a) Descriptive conditions for emergence 
 Aside from the mysterious attributes of emergent entities that I rejected above, 

emergent properties and objects generally are assumed not to be reducible to the 
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binary relations among their components1, to be unpredictable from the properties of 

their compositional substrate, and to show new or novel properties that do not exist in 

their substrate. Any adequate account of emergence must account for these 

characteristics. The main problem with these qualitative characteristics is that they are 

hard to determine by observation alone and ignorance of details or confusion of 

epiphenomenal properties with real properties (the properties of the substrate on the 

reductionist view) can lead to mistaken evaluations of emergence. We need more 

precise characteristics at the very least. 

b) Computational conditions for emergence 
 A system is temporally predictable if and only if its time evolution can be 

calculated from its initial conditions specified within some region in phase space 

together with its equations of motion to be within some region of phase space at some 

arbitrary later time. More specifically, the trajectory of a system is predictable if and 

only if there is a region η constraining the initial conditions at t0 such that the 

equations of motion will ensure that the trajectory of the system will pass within some 

region ε at some time t1, where the region η is chosen to satisfy ε. For indeterministic 

systems, the values are determined to the extent determined by the probabilistic 

factors in the laws. Predictability in this sense applies to all closed Hamiltonian 

(specifically, conservative, holonomic) systems, including those without exact 

analytical solutions, such as the three body problem. The systems without exact 

analytical solutions can be numerically calculated in principle, if we have a large 

enough computer. The macrostate of a microsystem can be predicted similarly by 

                                                 
1 If all relations including the dynamical organization of the parts were allowed, then one relation 
would just be the emergent entity. It would therefore be reduced to itself, and we would get nowhere. 
(See below on fusion.) If we allow binary relations, then we also allow all logical sums and products of 
these relations by that can be computed (sensu Church-Turing). My specific claim is that if an object is 
emergent, this set does not contain the emergent properties. 
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composing the trajectories of the microcomponments and averaging to get the 

expected macrovalues. 

 If we want to undermine predictability, at least one of the assumptions must 

go. The assumptions are 1) the system is closed, 2) the system is Hamiltonian, and 3) 

there exist sufficient computational resources. The last condition (3) is a shorthand 

way of saying that the information in all properties of the system can be computed 

from some set of boundary conditions and physical laws, where information is 

understood as an objective measure of asymmetry as in (Muller, 2007, also, but less 

rigorously in Collier, 1990b; 1996). As I will demonstrate later, all three of these 

assumptions are violated for some simple physical systems, including some in the 

solar system. It is worth noting that so-called emergent computation (Forrest, 1991) is 

really not a case of a violation of 3, nor are many models of 3 body systems that seem 

to demonstrate chaos or emergence. These are artifacts of the modeling process, and 

have no ontological significance. On the other hand, there are some systems that 

violate 3 because no computer could have sufficient power, let alone one connected to 

the system under study. I will give an example below in terms of Newtonian particle 

mechanics with gravity and friction that serves as an exemplar for emergence. More 

complex cases  are just more nuanced. 

 Novelty does not necessarily follow from mathematical unpredictability, since 

there may be no new properties formed in unpredictable systems, but novelty is 

impossible with unpredictability, except in the trivial sense that a pile of blocks is 

novel with respect to the block components. The predictability of the macrostate of a 

system from its microstate (states of the components of its substrate) is just the 

condition of reducibility, so unpredictability is also required for and sufficient for 

irreducibility. The advantage of the mathematical rendition of the characteristics of 
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emergence is that we have reduced three to one, except for possible additional 

requirements to ensure novel properties. Now the problem is to determine when 

computability fails in dynamical systems. That is when emergence begins. 

2. Dynamical realism 
 Dynamical realism is a name that C.A. Hooker and I have given to a 

metaphysics that holds that what is real is either dynamical or explicable in dynamical 

terms. Something is dynamical if and only if it can be described completely in terms 

of forces and flows. We use the term in a book in progress on reduction in complex 

systems, but some of the basic ideas are in (Collier and Hooker, 1999) and expressed 

in an analysis of asymptotics and reduction in (Hooker 2004). Why dynamical 

realism? Basically, because nothing that is not dynamical can have any effect on 

anything else, so it is impossible to have meaningful knowledge of it. (This is just a 

material version of Peirce’s Pragmatic maxim that any difference in meaning must 

make a difference to experience.) A similar consideration lies behind (Ladyman and 

Ross, 2007, pg. 29), except in that book structure plays the role of dynamics in Collier 

and Hooker. Depending on how science works out, the two may coincide, but I prefer 

dynamical realism because structure can be inert, and do nothing. 

 Logical characterizations can be useful, but they still need to be hooked up to 

the world in order to apply to anything. The problem with understanding emergence is 

to hook up the computational characterization to dynamical conditions. This turns out 

to be somewhat easier than it might appear, and involves the failure of one or more of 

the three conditions mentioned in section 1b above.  

 

3. Reduction and supervenience 
 Before showing how the logical conditions for emergence can be connected to 

dynamical conditions, it is useful to clear up some confusions about reduction. Most 
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of this has been done already by Ross and Spurrett (2004), Hooker (2004) and myself 

(2004a), so I will be brief. Kim (1998, 1999, 2005) argues that if supervenience holds 

(as I have granted above) then a supervenient system has no causal power that its 

substrate does not, therefore reducibility holds and emergence is false. We can grant 

the first conclusion that reducibility holds (in a certain way), but it is irrelevant to the 

conclusion that emergence is false, which I shall challenge. 

Reduction is ambiguous in three ways. It might mean intertheoretic reduction, 

the reduction of fundamental kinds of things (substance, traditionally), or that certain 

particular entities (objects, processes or properties) can be eliminated without any loss 

of explanatory power in principle. Intertheoretic reduction is irrelevant here. The 

reduction of the number of fundamental kinds of things is best called ontological 

deflation. It is a reasonable hypothesis that all that exists is physical. Kim’s argument 

shows that if supervenience, then ontological deflation – all causation is physical 

causation. I suppose it is obvious that this is not very controversial these days. 

However, despite supervenience, if reducibility fails in principle for some 

entity, then it is emergent. If there is no possible argument (deductive or inductive) 

from the parts, their intrinsic properties, and (the computational closure of) their 

binary relations to the full causal powers of the entity itself, then reductive 

explanation fails in principle. In these cases, even if physicalism is true, they are 

emergent. This idea of emergence as irreducibility to components fits C. D. Broad’s 

criteria (Collier and Muller 1998, see also Reuger 2000a, 2000b, 2004). Basically, 

Kim has committed a philosophical howler, and has missed the point entirely. He got 

on the wrong boat. 

A slightly different approach to show Kim’s mistake is due to Paul 

Humphrey’s (1997a, 1997b) account of emergence, based in the idea of fusion. The 
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idea is that dynamically connected components form a fusion, such that the properties 

of the components are not the same in the fusion as they are in the isolated 

components. Suppose the Earth and the Sun form a system. The fused system gives 

the Earth and the Sun properties that they would not have independently. Some of the 

properties of the independent components (like following rectilinear paths) no longer 

exist (the two orbit a common centre of gravity). Properties are emergent if they 

cannot be computed from the properties of the unfused components. In the Earth-Sun 

case the computation is relatively trivial, so there is no emergence. But this is not 

always the case, and I will give an example in section 5 below.  

Whether we take the component approach or Humphreys’ (they are not so 

different in spirit), Kim’s argument is irrelevant. Kim’s causation argument, on 

Humphreys’ approach, concerns the component fused system, but does not consider 

the relation between the separated (unfused) and fused systems. On the component 

account Kim considers that causal properties of the already combined system, without 

considering the relation between the properties of the components and those of the 

system. In either case, Kim is looking at the wrong thing. The only reason his 

argument gives the any appearance of being relevant is that he plays on the ambiguity 

between ontological reduction and ontological deflation.  

4. Hamiltonian systems and holonomic constraints 
 This is a difficult technical issue, with many complications, especially for 

specific systems, but it is central to my argument for both the dynamical 

characterization of, and existence of, emergent entities. I will therefore be painting a 

picture that ignores many subtleties, and I will be saying some things that seem to 

violate things that are well established in the literature of physics. Rather than go into 

details, I will point out right now that these apparent violations apply to specific 
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systems and ignore the complete description of the systems in which they are 

embedded, or else use a very broad notion of a Hamiltonian system, or both. Thus we 

have descriptions of Hamiltonian chaos, quantum chaos and nonholonomic 

constraints on Hamiltonian systems that I will be saying are ruled out by my 

definition of a Hamiltonian system. The set of Hamiltonian systems in the sense I use 

here is, I believe, equivalent to the set of trivial machines delimited by von Foerster 

(2003), and the set of mechanical systems as defined by Robert Rosen (1991. Alas, I 

do not yet have a proof that satisfies me. 

 Newtonian mechanics is a very open theory that allows such things as 

unpredictability, indeterminate but mathematically fully describable systems, 

nonconservation of energy, and other bizarre phenomena that have been described 

over the years. Physicists intuitively rule out such cases with implicit or explicit 

assumptions that restrain the set of models to those we recognize as mechanistic. 

These restrictions have been formalized first in the Lagrangian formulation, and later 

in the Hamiltonian formulation of Newton’s dynamics. The restrictions are often 

ignored in physics texts, so it is easy to let them slip past unnoticed. 

 The Lagrangian formulation for simple systems sets L = T – V, where L is the 

Lagrangian, T is the kinetic energy, and V is the potential energy. The integral of this 

is stationary on dynamically possible paths (Principle of Least Action). Dynamically, 

T is the flow part and V is the force part. Variation of the Lagrangian is determined by 

the force law (connecting forces to flows), generally in terms of generalized 

coordinates and their first derivative (velocity) – so the resulting equations are second 

order. The Hamiltonian can be based on the Lagrangian such that 

, where q is a generalized coordinate and p is a 

generalized momentum. The main difference, obviously, is the dependence on 

),,(),,( tqqLpqtqqH
i ii &&& −= ∑
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generalized momenta, thus the use of a 2n dimensional phase space instead of a n 

dimensional coordinate space. If L is a sum of functions homogeneous (i.e., no 

products of different degrees) in generalized velocities of degrees 0, 1, and 2 and the 

equations defining the generalized coordinates are not functions of time, then H = T + 

V = E, where E is a constant (i.e., the system is conservative) and I call such a system 

a Hamiltonian system. If the generalized coordinates do depend on time, then H is not 

constant, and H ≠ E, and the system is generally complex. Since all other constraints 

can be put into the formulation of the generalized coordinates, energy conservation is 

the only additional constraint on a closed Hamiltonian system. The same is true for 

quantum systems, which for closed systems are always Hamiltonian in current 

formulations of quantum mechanics. Quantum systems, therefore, are always simple, 

and cannot show either true chaos or emergence (Ford 1986). (Despite this, quantum 

chaos and emergence have been investigated; if real, these would require violation of 

the conditions on H = T + V.) 

 Hamiltonian systems have an overall force function (T) that is holonomic, i.e., 

depending only on the position coordinates and time (Holonomic Constraints, 2007), 

if and only if the force is conservative, an example being particles in a gravitational 

field. It is possible that component forces are nonconservative, but their combination 

must be. E being constant is also holonomic, as it depends only trivially on position 

coordinates and time. In general, if a system is holonomic it can do no virtual work 

because all virtual displacements are perpendicular to the forces of the constraints, so 

there is (would be) no force on them. This is really just another way of saying that the 

H of Hamiltonian systems depends only on (appropriately chosen) generalized 

coordinates and E. This is of central importance to the theory of dynamical 

emergence, as I will argue below. 
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An alternative way to express holonomic systems is in terms of the 

Lagrangian: a system is holonomic when the Lagrangian can in principle be expressed 

in terms of as many coordinates as the system has degrees of freedom. Such systems 

are integrable, though integration may in practice require numerical approximation. 

So holonomic systems can be understood as a whole through the integration of their 

parts and their partwise interactions. A nonintegrable system must be non-holonomic, 

and must thus not be a Hamiltonian system2. An important characteristic of 

nonholonomic systems is that their equations of motion cannot be separated from their 

boundary conditions. Conrad and Matsuno (1990) make clear the consequences for 

dynamical systems: 

Differential equations provide the major means of describing the 

dynamics of physical systems in both quantum and classical 

mechanics. The indubitable success of this scheme suggests, on the 

surface, that in principle it could be extended to a universal program 

covering all of nature. The problem is that the essence of a differential 

equation description is a separation of itself from the boundary 

conditions, which are regarded as arbitrary.  

Conrad and Matsuno go on to draw conclusions about the application of the method to 

the whole universe (they claim the system breaks down, but it is actually compatible 

with “no boundary conditions” constraints on cosmological theories). Of more 

significance here is the breakdown of the separation of differential equations and 

boundary conditions in nonintegrable systems, exactly the ones that are nonholonomic 

(in which constraints like boundary conditions cannot be separated from the 

dynamics). In these systems, computation from partwise interactions fails, and the 

                                                 
2 The necessity of nonholonomic constraints was pointed out to me by Howard Pattee, 10 Aug 2000, on 
my mailing list Organization, Complexity, Autonomy, see also Pattee, 1967. 
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system is in a sense holistic. In any case, its dynamics cannot be reduced to the 

dynamics and partwise relations. This is one of the conditions for emergence.  

 I’ve shown above that nonHamiltonian systems are also nonconservative. The 

next step is to bring the two conditions governing nonholonomicity together and argue 

for a common basis of for emergence in dissipative nonholonomic self-interactive 

systems. 

5. Radically nonHamiltonian systems 
 It is generally recognized that Hamiltonian systems are mechanical. This idea 

of mechanical is summed up by their holonomic character, in an engineer’s sense that 

all their constraints can be expressed algebraically and are basically geometric. 

Nonholonomic systems, on the other hand must have a constraint that is expressed as 

a rate of change, so their form cannot be integrated to an algebraic form, and they 

cannot be understood geometrically. Some examples of nonholonomic systems are a 

rolling wheel (friction matters) or a planet experiencing tidal dissipation (recall that 

holonomic systems are nondissipative).  

 Some systems are nonHamiltonian, but are close to Hamiltonian. We can deal 

with such systems with approximations. This is a common method. Other 

nonHamiltonian systems step rapidly from one state to another (rapid is relative here), 

such as the onset of convection in a Bénard cell. The dynamics of these systems can 

be analyzed by comparing the micro- and known macromechanics, along with 

knowledge of the transition. This is how Bénard cells were in fact analyzed. However 

there is a large range of systems that are not close to step functions or close to smooth 

Hamiltonian systems. Such systems typically show sudden changes, for example, a 

wheel can loose friction suddenly, and a planet can slip from one resonant attractor to 
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another. I conjecture that this sort of radically nonHamiltonian behaviour underlies all 

emergence. In particular: 

1. The system must be nonholonomic, implying the system is nonintegrable (this 

ensures nonreducibility) 

2. The system is energetically (and/or informationally) open (boundary 

conditions are dynamic) 

3. The system has multiple attractors (see below) 

4. The characteristic rate of at least one property of the system is of the same 

order as the rate of the non-holonomic constraint (radically nonHamiltonian) 

5. If at least one of the properties is an essential property of the system, the 

system is essentially non-reducible; it is thus an emergent system 

I don’t claim that these conditions are independent; in fact I think they are not. I 

choose them because they are relatively easy to argue for in specific dynamical cases, 

and from that to emergence. I do claim, however, that the conditions are necessary 

and sufficient dynamical conditions for emergence. All are required for the emergence 

of systems, and all but the last for emergence of properties. If any is violated (perhaps 

implying the violation of others), there is no emergence. 

Condition 3 is debatable. Bénard cells are a good case in point. They are set up 

so that only one possible state can be reached by the transition (there is only one 

possible attractor). It is possible to predict the convecting state from general 

knowledge of fluids and knowledge of the specific conditions, unlike systems with 

multiple attractors, for which it is possible to predict that one of several attractors will 

be reached, but the ultimate attractor is not predictable. On the other hand, it is 

impossible in the case of the Bénard cell to predict from the microscopic equations of 

motion what the macroscopic state will be. So in this sense Bénard cells show both 
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unpredictability and novelty. I don’t think we need to make a decision about how to 

classify such cases as long as we realize that they differ from the more general case. 

6. Determinism, nonreducibility, unpredictability 
 Systems that satisfy the above conditions may be deterministic, but they must 

be dissipative. If dissipation is irreducibly statistical, then determinism is ruled out to 

at least this extent. However, since there is good reason to think that, overall, particle 

systems are deterministic, there is also reason to think that the Second Law of 

Thermodynamics, in its statistical mechanical form, must be compatible with 

determinism, and that we need some nonepistemic explanation for the chance or 

probabilistic character of dissipative systems, for example some form of relative 

chance based on relative information in the macrostate to the microstate (see Collier 

1990a). This problem is too difficult to go into here, and is not really relevant. 

However, systems satisfying conditions 1-5 are irreducible and unpredictable. This is 

best shown with an example (Collier 2004a). 

Mercury was found in the 1960s to rotate on its axis three times for each two 

times it revolves around the Sun. This was extremely surprising, since it had been 

thought that it would be in the same 1:1 harmonic as our Moon-Earth system. There 

are several more complex harmonic relations in the Solar System. It is well known 

that the three body gravitational problem is not solvable analytically, but it can be 

solved numerically, in principle, to any degree of accuracy we might require for any 

finite time (this is true for any Hamiltonian system – see discussion above). However, 

this case involves the dissipation of energy through tidal torques, unless the system is 

in some harmonic ratio. We would like, ideally, a complete explanation (possibly 

probabilistic) of why Mercury is in a 3:2 harmonic. Due to the high mass of the sun 

and the proximity of Mercury to the Sun, the high tidal torque dissipates energy 

 - 14 -



reasonably quickly in astronomical time, so Mercury is very likely to end up in some 

harmonic ratio in a finite amount of time. The central explanatory problem then 

becomes “why a 3:2 ratio rather than a 1:1 ratio like our Moon, or some other 

harmonic ratio?” 

We cannot apply Hamiltonian methods, since the rate of dissipation is roughly the 

same as the characteristic rate of the phenomenon to be explained. It is neither a step 

function nor near Hamiltonian. If the dissipation rate were small, then we could use an 

approximate Hamiltonian; if it were large, we could use a step function.3 We are left 

with the Lagrangian. It is well known that these are not always solvable even by 

numerical approximation, if and only if the system is nonholonomic (see section 4 

above). I will give an intuitive argument that the Mercury’s harmonic is such a case. 

Each of the possible harmonics is an attractor. Why one attractor rather than another? 

If the system were Hamiltonian, then the system would be in one attractor or another. 

In principle we could take into account the effects of all other bodies on Mercury and 

the Sun (assuming the universe is finite, or at least that the effects can be localized), 

and decide with an arbitrarily high degree of accuracy which attractor the system is in. 

However, given the dissipative nature of the system, it ends up in one attractor or 

another in finite time. If we examine the boundaries between the attractors, they are 

fractal, meaning that every two points in one attractor have a point between them in 

another attractor, at least in the boundary region. This is as if the three body 

gravitational problem had to be decided in finite time, which is impossible by 

numerical approximation (the problem is non computable, even by convergent 

approximation). Therefore there can in principle be no complete explanation of why 

the Mercury-Sun system is in a 3:2 harmonic. There is approximately a ⅓ chance of 

                                                 
3 This is what we do in the Bénard cell case, inn  which the rate of increased dissipation during the 
transition is high relative to the rates of dissipation in the two stable states. 
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3:2 capture, ½ of a 1:1 capture, and the rest of the harmonics take up the rest of the 

chances. The chances of a 3:2 capture are good, but not that good. The system is 

obviously physical, but it has a nonreducible property. This property fits Broad’s 

notion of emergence.  

Note that condition 1 is satisfied, since the system is nonintegrable: boundary 

conditions are dynamically involved in the capture in harmonic resonance. Condition 

2 is satisfied for this reason as well, plus the system dissipates energy. Condition 3 is 

obviously satisfied by the existence of multiple attractors. Condition 4 is satisfied 

because the rate of capture equals the rate of dissipation (also implying radical 

nonHamiltonicity). Condition 5 is not satisfied in this case, but it is satisfied for the 

specific property of the ratio of harmonic resonance. This property is an emergence 

candidate because it is nonreducible (condition 1) and unpredictable (conditions 3, 4 

and 5). Since there is nothing specific about the way the Mercury-Sun system with 

respect to harmonic resonance satisfies the conditions, all cases fitting conditions 1-5 

above will have the same unpredictability and irreducibility. 

To show necessity is fairly trivial. If condition 1 is violated the system is at least 

numerically computable, and hence predictable. If condition 2 is violated, the 

boundary conditions are fixed rather than dynamic, so they are holonomic. If 

condition 3 is violated we can predict the single attractor as we can in the Bénard cell 

case (which is a bit ambiguous in the context of emergence). If condition 4 is violated, 

then the system can be treated as approximately Hamiltonian, and it is predictable. If 

condition 5 is violated, there is no emergent property, perhaps just a chaotic system. 

Since none of these conditions are specific to the example, they apply to all cases. So 

I have given necessary and sufficient (but probably not independent) dynamical 

conditions for nonreducibility and unpredictability. 
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7. Novelty 
 Novelty is a tricky issue with dynamical emergence, since all of the causes are 

driven in some sense at the lower level. This is where Humphreys (1997b) idea of 

fusion is useful. The property of the fusion is not the properties of the fused 

components. Given that conditions 1-5 are satisfied, the new property is not a sum of 

the properties of the components either. The fusion is genuinely novel. In my own 

work I have focused on cases in which the emergent entity is a system, rather than a 

system property, and I have called the fusion of the dynamical unity property of the 

system cohesion (Collier and Muller, 1998; Collier and Hooker, 1999). This is just 

Humphreys’ fusion applied to the system unity property. One could reverse the 

approach, and talk of the cohesion of properties wherever there is fusion (Ladyman 

and Ross, 2007). Thus, novelty, rather than being hard to get, is rather easy to 

achieve. This might be reflected in Broad’s view that water is emergent from its 

components (whether or not he was right about this). 

8. Individuation and Autonomy 
 Cohesion is also a property of individuation, because it not only binds together 

the components, but because the binding must be stronger overall than any binding 

with other objects (Collier and Hooker, 1999). This is reflected in the apt description 

of cohesion as the dividing glue (Collier, 2004b). The basic notion can be used 

effectively to distinguish levels in dynamic hierarchies (Collier, 2003). One variety of 

cohesion is autonomy, which is an organizational closure that maintains the closure so 

that the autonomy survives (Collier, 2006). Autonomy is thus a self sustaining form of 

cohesion, with is components contributing to the maintenance of the autonomy. Thus 

autonomy is functional in that it produces survival, and the components are functional 

inasmuch as they contribute to autonomy. This is the most basic form of function: 

contribution to survival, from which all other forms of function derive (Collier, 2006). 

 - 17 -



Levels of autonomy are possible, just like levels of cohesion (as in Collier, 2003), and 

we may have functional conflicts, as between body and cells, mind and body, and 

society and individual minds. Teleology is not a direct result of emergence, but it is 

made possible by it. There is nothing mysterious going on. It is all a result of 

comprehensible dynamics. 
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